ENERGIEHOLZPRODUKTION IN DER LANDWIRTSCHAFT

Chancen und Risiken aus Sicht des Natur- und Umweltschutzes
Inhalt

1. Kurzumtriebsplantagen – eine Einführung ........................... 4
   1.1 Thematik und Begrifflichkeiten ........................................ 4

2. Situation von Energieholzplantagen in Deutschland .............. 6
   2.1 Existierende Flächen und Flächenpotenziale ....................... 6
   2.2 Rechtliche Lage und Förderung ......................................... 6
      2.2.1 Ordnungsrecht .................................................. 7
      2.2.2 Förderrecht .................................................... 7

3. Bewertung der Energieholzproduktion aus Kurzumtrieb .......... 8
   3.1 Waldbau und Bewirtschaftung ........................................... 8
      3.1.1 Pappeln (Populus spec.) ......................................... 8
      3.1.2 Weiden (Salix spec.) ............................................. 10
      3.1.3 Robinie (Robinia pseudoacacia) ................................10
      3.1.4 Erlen (Alnus spec.) .............................................. 11
      3.1.5 Birke (Betula spec.) ............................................. 11
      3.1.6 Eberesche (Sorbus aucuparia) ................................ 11
      3.1.7 Winterlinde (Tilia cordata) .................................... 12
      3.1.8 Bergahorn (Acer pseudoplatanus) ............................ 12
   3.2 Standortangepasste Baumartenwahl ................................ 12
   3.3 Eingeschränkte genetische Vielfalt .................................. 14
   3.4 Flächenvorbereitende Bodenbearbeitung ............................ 14
   3.5 Begleitungswurzelsicherung .......................................... 15
   3.6 Erntezyklen ............................................................ 17
      3.6.1 Mini-Rotation ................................................... 17
      3.6.2 Midi-Rotation .................................................... 18
      3.6.3 Maxi-Rotation ................................................... 18
   3.7 Schlussfolgerungen aus waldbaulicher und naturschutzfachlicher Sicht ... 19

4. Bodenökologie ............................................................... 20
   4.1 Positivwirkungen .......................................................... 20
      4.1.1 Extensivierung der Bodenbearbeitung .......................... 20
      4.1.2 Erhöhte Bindung von Hauptnährstoffen sowie Schad- und
          Spurenelementen ....................................................... 21
          4.1.2.1 Bindung von Hauptnährstoffen ............................. 21
          4.1.2.2 Bindung von Schadstoffen und Spurenelementen ........ 23
      4.1.3 N₂O-Emissionen aus Kurzumtriebsplantagen .................... 23
      4.1.4 Erhöhte C-Bindung und Humusbildung .......................... 25
      4.1.5 Erosionsschutz ................................................... 26
      4.1.6 Intensivierung des Bodenlebens ................................ 27
   4.2 Negativwirkungen .......................................................... 28
      4.2.1 Schubartige Freisetzung von Nährstoffen ....................... 28
      4.2.2 Versauerung und Auswaschung von Nährstoffen ................ 29
      4.2.3 Erhöhter Wasserverbrauch, Reduktion der Grundwasserneubildung 31
      4.2.4 Erhöhter Eintrag von atmosphärischen Stoffen .................. 32
   4.3 Schlussfolgerungen aus bodenökologischer Sicht .................. 33
5. Pflanzenartenvielfalt .......................................... 34
  5.1 Einflüsse auf die Pflanzenartenvielfalt in KUP ......................... 34
    5.1.1 Wahl der Umgebung ............................................. 34
    5.1.2 Flächengröße der Energieholzplantage ............................ 35
    5.1.3 Vornutzung .................................................... 36
    5.1.4 Flächenvorbereitung ............................................. 36
    5.1.5 Baum- und Sortenwahl .......................................... 37
    5.1.6 Alter/Rotation .................................................. 38
  5.2 Auswirkungen von KUP .............................................. 39
    5.2.1 Artenschutz ..................................................... 39
    5.2.2 Artenvielfalt der umgebenden Landschaft .......................... 39
  5.3 Schlussfolgerungen aus pflanzenökologisch-naturschutzfachlicher Sicht . 40

6. Tierartenvielfalt .................................................. 41
  6.1 Einführung ............................................................ 41
  6.2 Bisheriger Kenntnisstand zur Zoodiversität ............................. 41
    6.2.1 Allgemeine Besiedlung von KUP durch Tiere ...................... 41
    6.2.2 Zoodiversität in Abhängigkeit von betrachteter Vergleichsfläche und Tiergruppe ........................................... 42
    6.2.3 Eignung als Habitate für Rote-Liste-Arten .......................... 43
    6.2.4 Positive Beeinflussung durch Baumartenwahl bzw.
      negative durch Neophyten ............................................. 43
    6.2.5 Positive Beeinflussung durch Strukturreichtum und
      Begleitstrukturen .................................................. 44
    6.2.6 Einfluss von Alter und Umtriebsstadium (frische Rodungsfläche bis Reifephase) .............................................. 45
    6.2.7 Einfluss von Flächengröße und Ökotoneffekt .......................... 45
    6.2.8 Vergleich von KUP und Grünland .................................... 46
    6.2.9 Vorrang- und Tabuflächen aus Zoodiversitätssicht ................ 47
  6.3 Schlussfolgerungen aus tierökologisch-naturschutzfachlicher Sicht ...... 48

7. Landschaftsökologische Betrachtung .............................. 49
  7.1 Kurzumtriebsplantagen als Landnutzungssysteme ....................... 49
  7.2 Wirkfaktoren und Wirrkomplexe von Kurzumtriebsplantagen .......... 49
  7.3 Einfluss auf Entwicklungsziele von Landschaftsfunktionen .......... 52
  7.4 Schlussfolgerungen aus landschaftsökologischer und
    naturschutzfachlicher Sicht ........................................ 57

8. Offene Fragen und Perspektiven ................................... 58
  8.1 Grundwasserzehrung ............................................... 58
  8.2 Bodenerosion, Veränderung des Humusgehalts ........................ 58
  8.3 Retention von Niederschlägen ...................................... 58
  8.4 Veränderung von Lebensräumen ...................................... 59
  8.5 Klimatischer Ausgleich, Luftreinhaltung ............................ 61

9. Literatur .............................................................. 62

10. Glossar ............................................................... 68
Vorwort


Florian Schöne
NABU
1. Kurzumtriebsplantagen – eine Einführung

1.1 Thematik und Begrifflichkeiten


Im klassischen Niederwald kam es daher immer wieder zur Ausprägung von mehrjährigen Zwischenphasen mit weniger bewaldeten Teilflächen und damit insgesamt zur Förderung von unmittelbar benachbarten, unterschiedlichen Lebensräumen für die Pflanzen- und Tierwelt. Daher sind die heutigen modernen Kurzumtriebsplantagen, bei denen ausschließlich Klonmaterial, also genetisch einheitliches Pflanzenmaterial aus Hochleistungszüchtungen verwendet wird und zudem mit hohen Pflanzenzahlen pro ha Anbaufläche gearbeitet wird, um entsprechende Massenleistungen zu erzielen, nicht mit der klassischen Niederwaldwirtschaft zu vergleichen. Prinzipiell gemeinsam haben Kurzumtriebsplantagen – im Folgenden als KUP bezeichnet – und Niederwälder allerdings, was die grundlegende Motivation dieser Landbewirtschaftung anbetrifft. In beiden Fällen wird mittels holziger Pflanzen ein nachwachsender Rohstoff zur Energiegewinnung erzeugt. Diese Energieerzeugung ist weitgehend CO₂-bzw. klimaneutral, d.h., eine äquivalente Menge des bei der Verbrennung von holziger Biomasse freigesetzten CO₂ wird beim Aufwuchs der Pflanzen wieder aus der Atmosphäre entnommen.

Grundsätzlich gilt dies für alle pflanzlichen, also „nachwachsenden“ Rohstoffe. Das Besondere an der Erzeugung holziger Biomasse im Kurzumtrieb ist jedoch der relativ geringe Energie-Input – und damit der relativ geringe Anteil an benötigten bzw. wieder freigesetzten CO₂-Äquivalenten im Vergleich zu sonstigen Bioenergieverfahren (siehe dazu auch Abbildung 3).


Abschließend wird auf der Basis des vorhandenen Wissens eine fachübergreifende Bewertung vorgenommen. Zudem werden offene Fragen und Perspektiven hinsichtlich einer möglichst naturschutzgerechten Anlage und Bewirtschaftung von KUP erörtert.
Situation von Energieholzplantagen in Deutschland

2. Situation von Energieholzplantagen in Deutschland

2.1 Existierende Flächen und Flächenpotenziale


Dabei schätzen Murach et al. (2008) die theoretisch mögliche Anbaufläche für KUP mit Pappel, Weide und Robinie allein für Brandenburg auf insgesamt ca. 200.000 ha, was einem Potenzial von ca. 2 Mio. t atro (= absolut trocken) an holziger Biomasse pro Jahr allein für dieses Bundesland entspricht.

2.2 Rechtliche Lage und Förderung

2.2.1 Ordnungsrecht

Das Bundeswaldgesetz (BWaldG): Hier steht eine Novellierung an, bei der angestrebt wird, KUP eindeutig aus der Definition des Waldbegriffs herauszunehmen. Damit wäre auch die Anlage einer KUP nicht als Aufforstung zu verstehen.

Das Gesetz zu Gleichstellung stillgelegter und landwirtschaftlicher Flächen (GzG 2006): Hier wird festgelegt, dass Agrarholzflächen unter den Regelungen für Direktzahlungen im Rahmen der EU-Agrarpolitik weiterhin als landwirtschaftliche Fläche anerkannt bleiben.

Das Forstvermehrungsgutgesetz (FoVG): Auch hier ist die Frage der Anwendung ungeklärt, da KUP nur sehr bedingt dem im Gesetz beschriebenen „forstlichen Zweck“ zuzuordnen sind. Zudem gehört die Weide nicht zu den im Gesetz gelisteten Baumarten. Gleiches gilt für das Saatgutverkehrsgesetz (SaatVerkG), was bedeutet, dass die Weide, so lange kein gewerblicher Sortenschutz vorliegt, frei vermehrt und in den Verkehr gebracht werden darf.


2.2.2 Förderrecht


3. Bewertung der Energieholzproduktion aus Kurzumtrieb

3.1 Waldbau und Bewirtschaftung


Im Folgenden werden zunächst die Baumarten vorgestellt, die aus Sicht der Waldbautechnik grundsätzlich für den Betrieb von KUP geeignet sind. Anschließend werden Bewirtschaftungstechniken wie Flächenvorbereitung, Pflanzung, Bestandspflege und Erntezyklen besprochen und deren Wirkungen auf den Naturhaushalt erörtert.

3.1.1 Pappeln (Populus spec.)


Abb. 4: „Innenansicht“ einer Pappelplantage (Standort Georgenhof, Nordhessen)

Abb. 5: Pappelsteckling, wenige Wochen nach der Anpflanzung
### Bewertung der Energieholzproduktion aus Kurzumtrieb

#### Tabelle 1: Eigenschaften von wichtigen Pappelarten für den Kurzumtrieb (Röhricht & Ruscher 2004)

<table>
<thead>
<tr>
<th>Familie</th>
<th>Salicaceae – Weidengewächse</th>
<th>Gattung</th>
<th>Populus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sektion</td>
<td>AIGEIROS (Schwarzpappeln)</td>
<td>TACAMAHACA</td>
<td>LEUCE (Weiß-/Zitterpappeln)</td>
</tr>
<tr>
<td>Natürliche</td>
<td>Europa, W-Asien, N-Amerika</td>
<td>N-Amerika, Asien</td>
<td>Europa, Asien, N-Amerika, N-Afrika</td>
</tr>
<tr>
<td>Verbreitung</td>
<td>N-Amerika, Asien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wichtige Arten</td>
<td>P. nigra (Europäische Schwarzpappel)</td>
<td>P. trichocarpa (Amerikanische Schwarzmangfall)</td>
<td>P. alba (Weißpappel)</td>
</tr>
<tr>
<td></td>
<td>P. deltoides (Amerikanische Schwarzmangfall)</td>
<td>P. maximowiczii (Asiatische Balsampappel)</td>
<td>P. tremula (Europäische Aspe)</td>
</tr>
<tr>
<td>Standort-</td>
<td>Hohe Ansprüche an Nährstoffversorgung und Durchwurzelbarkeit, keine Staunässe</td>
<td>Wechselfeuchte Standorte, keine windexponierten Lagen</td>
<td>Mäßig nasse bis trockene Standorte, jedoch Grundwassereinfluss, geringe Ansprüche an Klima und Standort</td>
</tr>
<tr>
<td>ansprüche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bodenart</td>
<td>Bevorzugt Aueböden, gute durchlüftete Standorte, gute Wasserversorgung, hohe pH-Werte</td>
<td>Breites Spektrum: Sandböden bis Lehm, auch trockene Standorte, optimal fließendes Grundwasser 1-2m, nährstoffreich, kalkhaltig</td>
<td>Breites Spektrum: Kippenböden bis schwere Lehmböden, optimal sind frische humus- und nährstoffreiche Böden</td>
</tr>
<tr>
<td>Wuchs- und</td>
<td>Empfindlich auf Dichtstand</td>
<td>Rasches Jugendwachstum</td>
<td>Starkes Jugendwachstum, gute Verträglichkeit des „auf den Stock setzen“, Dichtstandverträglichkeit</td>
</tr>
<tr>
<td>Ertragsleistung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wichtige</td>
<td>-</td>
<td>Gute Resistenz gegen Pappelbock und Pappelblattkäfer</td>
<td>Kleiner und großer Pappelbock, roter Pappelblattkäfer</td>
</tr>
<tr>
<td>Schädlinge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Besonderheit</td>
<td>Nicht geeignet für Kurzumtrieb, große Bedeutung als Kreuzungsartner</td>
<td>Dichtstandverträglichkeit, kräftige Bewurzelung</td>
<td>Keine Stecklingsbewurzelung, langsames Wachstum (P. tremula), mind. 8-jähriger Umtrieb notwendig</td>
</tr>
</tbody>
</table>


#### Tabelle 2: Biomasseleistung der wichtigsten Pappelarten und Kreuzungen bei einer Umtriebszeit von vier Jahren und guten Wuchsbedingungen (Hofmann 2007)

<table>
<thead>
<tr>
<th>Pflanze</th>
<th>1. Rotation [t/ha/a]</th>
<th>2. Rotation [t/ha/a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. trichocarpa</td>
<td>8,7</td>
<td>18,4</td>
</tr>
<tr>
<td>P. trichocarpa x P. deltoides</td>
<td>11,5</td>
<td>19,9</td>
</tr>
<tr>
<td>P. nigra x P. maximowiczii</td>
<td>10,8</td>
<td>17,3</td>
</tr>
<tr>
<td>P. x euramericana</td>
<td>7,2</td>
<td>6,2</td>
</tr>
<tr>
<td>P. tremula x P. tremuloides</td>
<td>11</td>
<td>4,7</td>
</tr>
</tbody>
</table>
3.1.2 Weiden (Salix spec.)


<table>
<thead>
<tr>
<th>Tabelle 3: Eigenschaften von Weidenarten für den Kurzumtrieb (Röhricht &amp; Ruscher 2004)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Familie</strong></td>
</tr>
<tr>
<td><strong>Gattung</strong></td>
</tr>
</tbody>
</table>
| **Wichtige Arten** | S. viminalis (Korb-/Hanfweide)  
S. smithiana (Kätzchenweide)  
S. dasyclados (Filzastweide) |
| **Standortansprüche** | Wechselfeuchte bis feuchte Standorte, jedoch keine Staunässe |
| **Bodenart** | Breites Spektrum an Bodenarten, bevorzugt leichte, gut durchlüftete Böden |
| **Wuchs- und Ertragsleistung** | Starkes Jugendwachstum |
| **Wichtige Schädlinge** | Weidenblattrost |
| **Besonderheit** | Dichtstandsverträglichkeit, große Frosthärte |


Die Vorzüge der Weide (Salix spec.) liegen im nahezu 100%igen Anwuchs- und Regenerationserfolg sowie in ihrer Frosthärte. Die Ertragsleistung liegt im Allgemeinen jedoch niedriger als die der Balsampappeln. Bei Umtriebszeiten bis maximal vier Jahre werden auf leichten Böden und bei guter Wasserversorgung jährlich ca. 8 t/ha produziert (Hofmann 1998). Von Guericke (2006) wurde eine Trockenbiomasseproduktion vier verschiedener schwedischer Weidenklone zwischen 2,8 t/ha und 6,1 t/ha im ersten Standjahr festgestellt. Der optimale Ernterhythmus der Weide liegt bei 3 bis 5 Jahren (Guericke 2006).

3.1.3 Robinie (Robinia pseudoacacia)

Hervorragende Wuchs- und Holzeigenschaften prädestinieren die Robinie (Robinia pseudoacacia) für hochwertige Verwendungen im Außenbereich und als Energieholz in Kurzumtriebsplantagen.

Die Robinie hat eine stattliche Zuwachsleistung, einen sehr geringen Feuchtegehalt des Holzes, eine hohe Wiederaustriebstüchtigkeit und eignet sich für die unterschiedlichsten Standorte. Die höchsten Erträge sind dabei nur auf guten Standorten zu erwarten. Die Fähigkeit der Robinie, Luftstickstoff zu binden, ermöglicht ihr aber auch auf Extremstandorten und auf landwirtschaftlich weniger geeigneten Flächen ein passables Wachstum (Führer 2005). Der jährliche Zuwachs liegt zwischen 6 und 11 t/ha. Das entspricht im besten Fall einem Brennwert von 4200 Litern Heizöl, im schlechtesten Fall von 2200 Litern (Schüler et al. 2006).

Nachteilig kann sich die Empfindlichkeit der Robinie gegenüber Frost auswirken. Besonders Frühfröste können große Schäden anrichten. Denn die Robinie schließt erst sehr spät im Jahr mit dem Trieb ab, so dass bei
3.14 Erlen (Alnus spec.)


Die Grauerle (Alnus incana) ist auf sickernassen (frischen), z.T. zeitweilig überfluteten, nährstoff- und basenreichen, meist kalkhaltigen, locker durchlüfteten, rohen, vorwiegend kiesig-sandigen Tonböden zu finden. Der Standort sollte mäßig sauer bis alkalisch mit einem pH-Wert von etwa 6 bis >7,5 sein. Auch die Grauerle besitzt ein gutes Stockausschlagvermögen. Bei einem Anbauversuch in Österreich zeigte die Grauerle auf frischen bis sehr frischen Standorten und einem Pflanzverband von 1 x 2 m eine Biomasseproduktion von durchschnittlich 5,8-7,1 t/ha pro Jahr nach sechs Jahren Umtriebszeit (Schuster 2007).

3.15 Birke (Betula spec.)


Ergebnisse aus einem Anbauversuch in Österreich zeigten eine Trockenbiomasseproduktion der Birke auf frischen bis mäßig frischen Standorten von durchschnittlich 5,9-6,7 t/ha pro Jahr bei einer Umtriebszeit von zwölf Jahren und einem Pflanzverband von 1 x 2 m (Schuster 2007).

3.16 Eberesche (Sorbus aucuparia)


3.1.7 Winterlinde (*Tilia cordata*)

Die Linde ist schnellwüchsig und kommt auf frischen bis mäßig trockenen, basenreichen Lehm- und Tonböden vor. Der Standort kann mäßig sauer bis alkalisch sein, mit einem pH-Wert von etwa 6 bis 7,5.


3.1.8 Bergahorn (*Acer pseudoplatanus*)


Auf einem sandigen Substrat mit einem pH-Wert von 4,5 erreichte der Bergahorn in Untersuchungen von Vande Walle et al. (2007) eine Biomasseproduktion von jährlich 1,2 t/ha nach einer vierjährigen Standzeit bei einer Überlebensrate von 96,8 %.

3.2 Standortangepasste Baumartenwahl


### Tabelle 4: Für häufig vorkommende Böden geeignete Baumarten (in Anlehnung an Schlüter 1990)

<table>
<thead>
<tr>
<th>Bodentyp</th>
<th>Nährstoffbedingung</th>
<th>Baumarten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feinerdehaltige steinige</td>
<td>Nährstoffarm, trocken</td>
<td>Betula pendula, Populus spec., Salix spec.</td>
</tr>
<tr>
<td>oder kiesige Böden</td>
<td>Nährstoffarm, frisch bis feucht</td>
<td>Betula pendula, Populus spec., Salix spec., Sorbus aucuparia</td>
</tr>
<tr>
<td></td>
<td>Nährstoffreich, trocken</td>
<td>Betula pendula, Populus spec., Salix spec., Sorbus aucuparia</td>
</tr>
<tr>
<td></td>
<td>Nährstoffreich, frisch bis feucht</td>
<td>Acer pseudoplatanus, Alnus glutinosa, Alnus incana, Betula pendula, Populus tremula, Salix spec.</td>
</tr>
<tr>
<td>Sandige Böden</td>
<td>Nährstoffarm, trocken</td>
<td>Betula pendula, Populus spec., Sorbus aucuparia</td>
</tr>
<tr>
<td></td>
<td>Nährstoffarm, frisch bis feucht</td>
<td>Betula pendula, Betula pubescens, Populus spec., Salix spec., Sorbus aucuparia</td>
</tr>
<tr>
<td></td>
<td>(Mäßig) nährstoffarm, trocken</td>
<td>Betula pendula, Populus spec., Sorbus aucuparia</td>
</tr>
<tr>
<td></td>
<td>(Mäßig) nährstoffarm, frisch bis feucht</td>
<td>Betula pendula, Populus spec., Salix spec., Sorbus aucuparia</td>
</tr>
<tr>
<td>Lehmige Böden</td>
<td>Nährstoffreich, trocken</td>
<td>Acer pseudoplatanus, Alnus glutinosa, Alnus incana, Betula pendula, Populus spec., Salix spec., Tilia cordata</td>
</tr>
<tr>
<td></td>
<td>Nährstoffreich, frisch bis feucht</td>
<td>Acer pseudoplatanus, Alnus glutinosa, Alnus incana, Betula pendula, Populus spec., Salix spec., Tilia cordata</td>
</tr>
<tr>
<td>Tonige Böden</td>
<td>(Mäßig) nährstoffarm, wechselfroken bis wechselfeucht</td>
<td>Sorbus aucuparia, Tilia cordata</td>
</tr>
<tr>
<td></td>
<td>Nährstoffreich, wechselfroken bis wechselfeucht</td>
<td>Acer pseudoplatanus, Alnus glutinosa, Alnus incana, Salix spec., Sorbus aucuparia, Tilia cordata</td>
</tr>
</tbody>
</table>


### 3.3 Eingeschränkte genetische Vielfalt


### 3.4 Flächenvorbereitende Bodenbearbeitung

Bewertung der Energieholzproduktion aus Kurzumtrieb


3.5 Begleitwuchsregulierung


Als Alternative zum Herbizideinsatz kommen prinzipiell die mechanische Unkrautentfernung und der Einsatz von so genannten Nutz- bzw. Schutzpflanzendecken in Frage. Die vom NOVALIS-Projekt durchgeführten Versuche zur Energieholzproduktion umfassen unterschiedliche Varianten zur Unkrautregulierung. Zur
Bewertung der Energieholzproduktion aus Kurzumtrieb


16

3.6 Erntezyklen

3.6.1 Mini-Rotation

Bei Mini-Rotationen erfolgt die Ernte der Bäume bereits nach zwei- bis dreijähriger Wachstumszeit. Um nach dieser kurzen Entwicklungszzeit wirtschaftliche Erträge zu erzielen, sind sehr dichte Bestände (16.000-20.000 Bäume pro Hektar) zu etablieren. Diese Nutzung führt zu hohen Masseleistungen je Hektar in Form von sehr schwachem Holzmaterial (3–4 cm Stammdurchmesser), das ausschließlich für Heizzwecke eingesetzt wird. Meist werden Weiden in Mini-Rotation genutzt.


Tabelle 5: Wichtige Weidensorten für den Kurzumtrieb (Röhricht & Ruscher 2004)

<table>
<thead>
<tr>
<th>Weidensorte</th>
<th>Kreuzung</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zieverich, Carmen, Ingeborg, Ulf, Rapp, Orm Lodden</td>
<td>S. viminalis</td>
<td>Mittlere bis hohe Ertragsleistung in Mini-Rotation, mittlere bis gute Resistenz gegen Blattrost</td>
</tr>
<tr>
<td>Jorr</td>
<td>S. viminalis (Kreuzung niederländischer Klone)</td>
<td>Hohes Ertragspotenzial, zügige Jugendentwicklung, mittlere Resistenz gegen Blattrost</td>
</tr>
<tr>
<td>Tora</td>
<td>S. schwerinii x S. viminalis (Kreuzung sibirische Korbweide x Orm)</td>
<td>Hohe Zuwachsraten, weitgehende Blattrostresistenz, geringer Befall mit Gallmücken, kaum Wildverbiss</td>
</tr>
<tr>
<td>Torhild</td>
<td>(S. viminalis x S. schwerinii) x S. viminalis</td>
<td>Sehr hohes Ertragsniveau, weitgehend resistent gegen Blattrost</td>
</tr>
<tr>
<td>Sven</td>
<td>S. viminalis x (S. viminalis x S. schwerinii) (Kreuzung der Sorten Jorum und Björn)</td>
<td>Hochertragssorte, hohe Resistenz gegen Blattrost</td>
</tr>
<tr>
<td>Olof</td>
<td>S. viminalis x (S. viminalis x S. schwerinii) (Kreuzung der englischen Sorte Bowles Hybrid mit Björn)</td>
<td>Kleinwüchsig, hohe Triebszahl, hohes Ertragsniveau, kein Blattrostbefall</td>
</tr>
<tr>
<td>Gudrun</td>
<td>S. dascylados</td>
<td>Hohe Frosttoleranz, ausgeprägte Resistenz gegen Blattbockkäfer, geringer Wassergehalt zur Ernte, gute Unkrautunterdrückung, teilweise Wildschäden</td>
</tr>
<tr>
<td>Tordis</td>
<td>(S. viminalis x S. schwerinii) x S. viminalis (Kreuzung der Sorten Tora und Ulf)</td>
<td>Blattrostresistenz, hohes Ertragspotenzial</td>
</tr>
</tbody>
</table>
Die von den Sorten Astria und Münden erreichte unterdurchschnittliche Ertragsleistung unterstreicht die Feststellung, dass Aspen für die Mini-Rotationsnutzung weniger geeignet sind. Der optimale Ernterhythmus von Aspen liegt bei etwa 15 Jahren im Bereich der Maxi-Rotation (Liesebach et al. 1999). Im zweijährigen Ernteturnus schneiden die Balsampappeln Beaupré und Max 3 am besten ab. Die Korbweide Zieverich entwickelt nach den vorliegenden Ergebnissen erst im dreijährigen Umtrieb einen starken jährlichen Biomassezuwachs. Insgesamt wird über die vier Umtriebszeiten eine stabile Produktion an Holzbiomasse nachgewiesen. Aus erntetechnischer Sicht ist hervorzuheben, dass bei zweijährigem Umtrieb durchschnittliche Stammdurchmesser von 29 mm (20 mm bei Aspen; 36-38 mm bei Max 3 und Beaupré) erreicht werden. Im dreijährigen Umtrieb entwickeln die Bäume Stämme von 35 mm (27 mm Zieverich; 47 mm Max 1) Durchmesser. Dabei ist die Anzahl der Nebentriebe von über 2 m Länge bei der Weide mit 9,7 bis 13 Trieben deutlich größer als bei den Pappelsorten (0,6-4,4 Trieb). Die Wuchshöhe der Bäume liegt zwischen 6 und 8 m.

### 3.6.2 Midi-Rotation


Laut einer von Traupmann (2004) erwähnten Studie (FBVA 1997) produzieren fünfjährige Balsampappelaufwüchse im Verband 0,4 m x 2,5 m pro Flächeneinheit ungefähr die gleiche Menge an Biomasse wie zehnjährige Aufwüchse in einem Verband 2,5 m x 2 m. So liefern Dünnholzproduktionen in Umtriebszeiten zwischen 6 und 10 Jahren bei einem etwas weiteren Verband von 2.000 bis 7.000 Stück pro Hektar ebenfalls hohe Erträge wie Mini-Rotationen. Wegen der zusätzlich eingesparten Pflanz- und Erntekosten ist diese Bewirtschaftungsform wirtschaftlicher als eine Produktion in kurzen bzw. extrem kurzen Umtriebszeiten (Traupmann 2004).

<table>
<thead>
<tr>
<th>Kreuzungen und Sorten</th>
<th>Kreuzungspartner</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mühle Larsen, Weser 1-6, Scott-Pauley, Fritzi-Pauley, Columbia River, Trichobel</td>
<td><em>P. trichocarpa x P. trichocarpa</em></td>
<td>Mittlere bis hohe Leistung bei Midi-Rotation</td>
</tr>
<tr>
<td>Androscoggin Hybrid 275/NE 42</td>
<td><em>P. maximowiczi x P. trichocarpa</em></td>
<td>Mittlere bis hohe Leistung bei Midi-Rotation</td>
</tr>
<tr>
<td>Max 1-5, Rochester</td>
<td><em>P. nigra x P. maximowiczi</em></td>
<td>Hohe Ertragsleistung bei Mini- und Midi-Rotation</td>
</tr>
<tr>
<td>Raspalje, Beaupré, Rap, Unal, Barn, Donk, Boelare</td>
<td><em>P. deltoides x P. trichocarpa</em></td>
<td>Sehr hohe Ertragsleistung bei allen Rotationstypen</td>
</tr>
<tr>
<td>Ahle 1-20, Tapiau 1-8</td>
<td><em>P. tremula x P. tremula</em></td>
<td></td>
</tr>
<tr>
<td>Astria, Münden 1-20</td>
<td><em>P. tremula x P. tremuloides</em></td>
<td>Hohe Leistung bei Maxi-Rotation</td>
</tr>
</tbody>
</table>

### 3.6.3 Maxi-Rotation

Für die Maxi-Rotation eignen sich die eher alternativen Baumarten wie Aspe sowie Bergahorn, Winterlinde, Eberesche und Erle, die zwar relativ schnellwüchsig sind, aber mit den Hochleistungsklonen der Pappel und den Weidenzüchtungen in Bezug auf die Wuchsleistungen in sehr kurzen Umtriebszeiten nicht mithalten können. Die Biomasseleistung der oben genannten Baumarten ist trotzdem in längeren Umtriebszeiten nicht zu unterschätzen. Bei den von Liesebach et al. (1999) erwarteten Wuchsentwicklungen der Aspe in Maxi-Rotation wird deren Holz nicht nur für die energetische Nutzung in Frage kommen, sondern vielmehr in der Papier- und Zellstoffindustrie Absatz finden. So zeigten deren Versuchsergebnisse, dass auch auf nährstoff- und wasserarme Flächen mit nur durchschnittlicher Wasserverfügbarkeit von Hybridaspen durchschnittlich 100 t/ha Biomasse innerhalb von zehn Jahren produziert werden können. Um einen maximalen durchschnittlichen Biomassezuwachs zu erreichen, werden Umtriebszeiten von mehr als zehn Jahren empfohlen (Liesebach et al. 1999). Pflanzenzahlen von 5555 Stück (2,0 m x 0,9 m) und 4200 Stück (2,0 m x 1,2 m) haben sich dabei als empfehlenswert erwiesen.


Aus ökologischer Sicht spricht vieles für möglichst lange Umtriebszeiten, um einerseits den Düngedarf gering zu halten und andererseits die positiven Wirkung der ungestörten Bodenentwicklung länger aufrecht zu erhalten.

3.7 Schlussfolgerungen aus waldbaulicher und naturschutzfachlicher Sicht

Um eine erfolgreiche Flächenanlage auf möglichst naturschutzgerechte Weise zu gewährleisten, sind folgende Punkte zu beachten:

- Die Baumartenwahl muss den standörtlichen Produktionsbedingungen angepasst werden.
- Verschiedene Baumarten oder zumindest verschiedene Sorten einer Baumart sollten kombiniert angebaut werden.
- Bei der Anlage ist auf das Pflügen der Fläche im Herbst aus Gründen des Boden- und Gewässerschutzes möglichst zu verzichten, stattdessen sollte im Frühjahr eine Bodenbearbeitung mit möglichst geringer Intensität durchgeführt werden.
- Die Umtriebszeit, Baumarten und Pflanzendichten müssen auf das gewünschte Produktionssortiment und die vorhandenen Erntemöglichkeiten abgestimmt werden. Dabei sind längere Umtriebszeiten aus Umweltsicht zu favorisieren.
4. Bodenökologie

4.1 Positivwirkungen

4.1.1 Extensivierung der Bodenbearbeitung

Im Vergleich zum konventionellen Ackerbau und mit Blick auf den Boden unterscheidet sich der Anbau von Agrarholz im Wesentlichen in drei Punkten:

- Wegfall der laufenden Bodenbearbeitung,
- weitgehender Verzicht auf Düngemittel,
- Reduktion des Spritzmitteleinsatzes.


Aus Sicht der Nährstoffversorgung und im Vergleich zum konventionellen Ackerbau können Kurzumtriebsplantagen als weitgehend extensive Form der Landbewirtschaftung bezeichnet werden.

Spritzmittel kommen beim Betrieb von KUP i.d.R. nur einmalig zum Einsatz, nämlich zur Herrichtung einer krautfreien Ackerfläche mittels Total- oder Auflaufherbiziden vor der Anpflanzung bzw. dem vorbereitenden Pflügen (vgl. Kap. 3.5). Der Einsatz von weiteren Pestiziden (Insektizide, Fungizide) zur Sicherung des Auf-
wuchses ist nach den bisherigen Erfahrungen nicht notwendig und allein aus technischen Gründen schwierig und kostenintensiv. Damit kann auch aus Sicht des Bodenwasserschutzes und im Vergleich zum Pesticideinsatz im konventionellen Ackerbau der Betrieb von KUP als eher extensiv bezeichnet werden.

Unklar bleibt jedoch bisher 1) was geschieht, wenn sehr großflächig mit einheitlichen Klonen gearbeitet wird, 2) welche der zu erwartenden klimatischen Veränderungen Schädigungen ggf. positiv beeinflussen, 3) ob eine langjährige Nutzung möglicherweise die Ausbreitung von Schädlingen fördert.

Hier besteht noch ein erhebliches Defizit an praktischen Erfahrungen und ein großer Forschungsbedarf, insbesondere was neue Züchtungen und die Sortenwahl betrifft.

4.1.2 Erhöhte Bindung von Hauptnährrelementen sowie Schad- und Spurenstoffen

Klassisches Gebiet der so genannten „Bio- oder Phytoremediation“ ist die Behandlung von belasteten Sonderstandorten (ehemalige Deponien, kontaminierte Flussauen, Bergbauräume etc.) mit Pflanzen, die Schad- und Spurenstoffe in ihrem Gewebe akkumulieren, ohne dass sie dabei selber Schaden nehmen. Über eine gezielte Ernte und Entsorgung können dann die unerwünschten Stoffe dem jeweiligen Standort bzw. dem biologischen Kreislauf entzogen werden.


4.1.2.1 Bindung von Hauptnährrelementen


Jug et al. (1999a) berichten von mittleren Raten der Nährstoffentzüge durch Erntemaßnahmen (Winterernte ohne Blätter) für einen Weiden-, einen Aspen- und einen Pappelklon unter optimierten Wachstumsbedingungen aufgrund wiederholter Düngungsmaßnahmen. Dabei liegt die Spanne der Nährstoffexporte nach ei-
ner Wachstumsperiode von fünf Jahren an drei unterschiedlichen Standorten (Abbachhof/Bayern, Canstein/Hessen, Wildeshausen/Nieder-sachsen) für Stickstoff (N) zwischen 90 bis 270 kg, für Phosphor (P) zwischen 15 und 45 kg, für Kalium (K) bei 30 bis 180 kg, für Kalzium (Ca) zwischen 55 und 350 kg und für Magnesium (Mg) bei 5 bis 25 kg pro ha. Insgesamt zeigte in dieser Studie der Weidenklon (*Salix viminalis*) die vergleichsweise höchsten Bindungs- bzw. Exportraten für zusätzlich durch die Düngungsmaßnahmen eingetragenen Stickstoff und Phosphor (270 kg N bzw. 45 kg P; Standort Canstein). Der Aspen- und Pappelkron reagierte insgesamt nicht mit erhöhten Bindungs- bzw. Exportraten auf die Düngungsmaßnahmen.

Ebenso dokumentieren Arbeiten von Berthelot et al. (2000) für die dort untersuchten Pappelklone Beaupré und Raspalje auf ehemals feuchtem Grasland in der Normandie und bei einer relativ hohen Biomasseleistung von jährlich 9-11 t/ha Trockenmasse hohe Bindungspotenziale für die Hauptnährstoffe N und P (N = 73-92, P = 15 kg/ha/a). Entsprechend hoch fallen auch die von den Autoren kalkulierten Nährstoffentzüge durch die Ernte aus. Dabei wird unterschieden, ob die gesamte oberirdische Biomasse (incl. Blättern; Entzug N = 206, P = 47 kg in 8 Jahren) oder nur das Stammholz mit einem Durchmesser von über 4 cm (Entzug N = 125, P = 33 kg in 8 Jahren) bzw. über 7 cm (Entzug N = 112, P = 28 kg in 8 Jahren) geerntet wird. Interessant ist, dass bei der Ganzbaumernte nur ca. 30 % mehr an Biomasseentzug, aber rund 84 % mehr an N und 68 % mehr an P dem System entzogen werden. Aus Sicht eines optimierten Nährstoffmanagements, d.h. einer möglichst hohen Biomasseentnahme bei möglichst geringen Verlusten bzw. optimaler Ausnutzung der Nährstoffe, empfehlen die Autoren daher nur die Ernte der Stammklasse unter 7 cm.


---


4.1.2.2 Bindung von Schadstoffen und Spurenelementen


Von achtfach höheren Cd-Konzentrationen im Hackgut von Pappel im Vergleich zu Fichte, Weizenstroh, Heu, Triticale und Rapspresskuchen - und damit indirekt von einer entsprechend hohen Bindungsrate für Cd durch Pappelanbau – berichten auch Hartmann et al. (2000) im Rahmen einer Studie zu Verbrennungsversuchen mit biogenen Festbrennstoffen. Dabei liegen die Gehalte anderer Schwermetalle des Pappelhackguts auf einem vergleichbaren Niveau (As, Co, Cu, Hg, Pb, Zn) oder sogar deutlich unter den Werten der anderen Biomassebrennstoffe (Cr, Mn, Mo, Ni).

Kurzumtriebsplantagen, insbesondere mit Weide, können somit dazu beitragen, eutrophierte oder auch anderweitig kontaminierte Standorte zu dekontaminieren.

4.1.3 N₂O-Emissionen aus Kurzumtriebsplantagen

Lachgas (Distickstoffmonoxid, N₂O) ist ein atmosphärisches Spurengas mit einem Klimapotenzial, das 310-mal so groß ist wie das von Kohlendioxid. N₂O trägt derzeit mit 11 % zum anthropogen bedingten Treibhaus- effekt bei (IPCC 2007) und wird primär durch mikrobielle Abbauprozesse von N-Verbindungen aus Böden freigesetzt. Je Hektar landwirtschaftlich genutzter Fläche werden im Schnitt ca. 1 kg N₂O pro Jahr freigesetzt, wobei die Spannweite der Emission insbesondere je nach Art der Flächenbewirtschaftung stark schwanken kann (Haber 2002).

Die Ergebnisse zeigen folgende Rangfolge der wöchentlich gemessenen und zu Jahresraten akkumulierten Emissionen (Werte in Klammern = kg N₂O-N/ha/a für die Zeit April 1996 - März 1997; aus Teepe 1999):

**Brache (2,53 kg) > Raps (2,30 kg) > Eiche (0,96 kg) > Pappel/10 Jahre (0,48 kg) > Pappel/5 Jahre + N-Düngung (0,46 kg) > Pappel/5 Jahre (0,21 kg).**


**Die relativ hohen N₂O-Emissionsraten aus der Brachfläche lassen den Schluss zu, dass zumindest aus Klimaschutzzwecken die Anlage von Kurzumtriebsplantagen auf derartigen Flächen gefördert werden sollte.**

Insgesamt zeigt die Pappelfläche mit fünfjährigem Umtrieb und ohne Düngung nach den Auswertungen von Teepe (1999) die deutlich besten Klimabilanzen. Ausgedrückt in CO₂-Equivalenten (kg CO₂/ha/a) und unter Berücksichtigung der Freisetzung von Klimagassen aus Treibstoff, Düngung (incl. Herstellung) und Pflanzenschutzmitteln setzt die Pappelfläche lediglich 108 kg CO₂ pro ha und Jahr frei. Danach folgen die Varianten Pappel im zehnjährigen Umtrieb (319 kg), der Eichenwald (395 kg), die Brachfläche (1171 kg), die Pappel im fünfjährigen Umtrieb mit N-Düngung (1179 kg) und der Raps (3297 kg). Der prozentuale Anteil des N₂O (incl. Herstellung) an der Variante Pappel im fünfjährigen Umtrieb mit N-Düngung beträgt 43 % und damit nahezu gleich viel wie beim Raps (54 %).


**Raps (1,11 kg) > Knäuelgras (1,04 kg) > Roggen (0,66 kg) > Pappel (0,56 kg) > Weide (0,46 kg).**
Für die gedüngten Varianten (+ 150 kg N) ergibt sich eine klarere Abstufung mit folgender Reihung:
Raps (3,89 kg) > Roggen (1,59 kg) > Knäuelgras (1,24 kg) > Pappel (1,09 kg) ≥ Weide (1,05 kg).

Die durch die N-Düngung verursachte Mehremission an N₂O liegt um den Faktor 3,5 (Raps) bis 1,2 (Knäuelgras) höher. Die Weide (Faktor 1,9) reagiert auf die Düngung weniger als die Pappel und der Roggen (beide Faktor 2,4). Die Freisetzung von N₂O aus Brach- oder Nullflächen wurde in dieser Studie nicht erfasst.

Die bisher vorliegenden Messdaten weisen eindeutig darauf hin, dass Kurzumtriebsplantagen im Vergleich zu anderen Energiepflanzen sowie Brachflächen zur deutlichen Minderung der Lachgas-Freisetzung beitragen kann.

4.1.4 Erhöhte C-Bindung und Humusbildung


Auch Jug et al. (1999b) berichten von einer deutlichen Zunahme der organischen C-Gehalte (C\textsubscript{org}) von Oberböden dreier ehemaliger Ackerstandorte (Abbachhof/Bayern, Canstein/Hessen, Wildeshausen/Niedersachsen) neun bzw. sieben (Wildeshausen) Jahre nach Anpflanzung mit Pappel und Weide. Dabei stiegen die C\textsubscript{org}-Gehalte in 0-5 bzw. 5-10 cm Bodentiefe um ca. 0,5 bis 1 % (Abbachhof). In tieferen Bodenhorizonten (20-30 cm) kam es zu keiner (Wildeshausen) bzw. zu einer leichten Abnahme der C\textsubscript{org}-Gehalte (Abbachhof, Canstein, je ca. -0,25 %). Bilanzbetrachtungen von Jug et al. (1999b) für den Standort Abbachhof ergaben, dass es bei relativ geringen Ausgangsgehalten an C\textsubscript{org} (1,0 %) und damit entsprechend niedrigen Ausgangsvorräten im gesamten Oberboden (35 t/ha in 0-30 cm Bodentiefe) nach neun Jahren insgesamt zu einer Steigerung der C\textsubscript{org}-Vorräte von ca. 20 % gekommen ist. Diese Anreicherung fand vor allem in den Tiefenstufen 0-5 und 5-10 cm statt, in 20-30 cm Bodentiefe kam es zu Verlusten von ca. 1-2 t C\textsubscript{org}. Für die Standorte Canstein und Wildeshausen wurden neun bzw. sieben Jahre nach der Bestandsetablierung keine signifikanten Verschiebungen der C\textsubscript{org}-Vorräte im gesamten Oberboden ermittelt (Jug et al. 1999b).


**Generell kann die durch den Anbau von Agrarholz initierte zusätzliche Bindung von Kohlenstoff im Mineralboden zunächst nur als temporäre Senke angesehen werden. Bisher liegen keine weitergehenden Untersuchungen über die tatsächliche Art und Qualität der erhöhten C-Bindung unter Kurzumtriebsplantagen vor.**

Hier besteht eindeutiger Forschungsbedarf. Es muss davon ausgegangen werden, dass nur gewisse Anteile der oben beschriebenen C-Bindungsraten dauerhaft im Boden verbleiben. Die Art der Folgenutzung und Weiterbewirtschaftung, wie z.B. die Rückführung in eine reine Ackerfläche durch Rodung der Wurzelstöcke oder die Überführung in eine weniger intensive landwirtschaftliche Nutzungsform (z.B. als Agroforstsystem mit reduziertem Baumbestand und Nutzung als Weide oder Acker), dürfte über den tatsächlichen Netto-Gewinn der Bodenkohlenstoff-Speicherung entscheiden.

**Untersuchungen zum Anbau von KUP auf Grünlandflächen weisen auf anfängliche Kohlenstoffverluste in Höhe von mehr als 10 t/ha hin, die allein durch die pflügende Flächenvorbereitung entstehen (Jug et al. 1999b). In der Gesamtbilanz kann damit die zusätzliche C-Speicherung im Boden, die sich aus dem laufenden Betrieb einer Kurzumtriebsplantage ergibt, vollständig rücksichtlich gemacht werden. Möglicherweise entstehen durch eine nachlaufende Bodenbearbeitung (Rückführung der Fläche in Ackerland) zusätzliche Verluste an C\textsubscript{org}.**

### 4.1.5 Erosionsschutz

der Steckhölzer entwickelt sich meist innerhalb von wenigen Wochen eine üppige Bodenvegetation, die den Oberboden vor Abtrag schützt. Auch dass anschließende Mulchen zur Förderung der Konkurrenzkraft der Stecklinge führt nicht zur Erosion von Bodenmaterial, da das zerkleinerte Pfl anzenmaterial auf der Fläche verbleibt und somit den Oberflächenabfluss abbremst.

KUP bilden damit eine ausgezeichnete Möglichkeit, erosionsgefährdete Ackerstandorte langfristig vor dem Verlust an wertvoller Bodensubstanz zu schützen.

Zu beachten ist lediglich, dass bei der Anlage und Ernte von KUP die Fahrplinien der Maschinen möglichst hangparallel angelegt werden. So kann vermieden werden, dass sich die Fahrspuren bei Starkregeneignissen zu Abflusskanälen und Erosionsrinnen entwickeln.

4.1.6 Intensivierung des Bodenlebens


Werden auf Ackerflächen Kurzumtriebsplantagen angelegt, so nimmt die mikrobielle Aktivität und die Anreicherung von organischem Kohlenstoff aufgrund der fehlenden Ernterückstände vor allem in tiefen Mineralbodenhorizonten zunächst ab (Stetter & Makeschin 1997, Wolf 2004). Mit zunehmendem Alter einer KUP und der fehlenden Bodenbearbeitung reichert sich jedoch über den jährlichen Streufall wieder zunehmend organisches Material im Oberboden an, was sich zum einen durch ansteigende C-Gehalte in den obersten Mineralbodenhorizonten zeigt (Jug et al. 1999b). Zum anderen kommt es zur Veränderung von bodenphysikalischen Parametern wie z.B. eine Abnahme der Lagerungsdichte und eine Zunahme des Grobporenvolumens, was letztlich eine Steigerung des Wasserrückhaltevermögens bewirkt.

4.2 Negativwirkungen

4.2.1 Schubartige Freisetzung von Nährstoffen


Auch Aronsson et al. (2000) beschreiben anfängliche Nitrat- und Ammoniumpeaks bei Anbauversuchen incl. Düngung und Beregnung mit Weidenklonen im Südwesten von Schweden. Dabei liegen die maximalen Nitratgehalte allerdings nur sehr kurzfristig bei 10-12 mg NO\textsubscript{3}-N/l, und zwar einmalig unmittelbar nach einer N-Düngung im dritten Beobachtungsjahr, bzw. gleich zu Beginn der Bestandsbegründung in abgeschwächtem Ausmaß (1-2 mg NO\textsubscript{3}-N/l). Im weiteren Verlauf der Beobachtungszeit (1989-1997) liegen die Nitratkonzentrationen in 2 und 4 m Bodentiefe immer unter 1 mg NO\textsubscript{3}-N/l. Auch für Ammonium zeigen sich hier sehr kurzfristige Anfangs- und durch die N-Düngung initiierte Peaks, allerdings auch wieder nur mit maximalen Konzentrationen von 1 bis knapp über 4 mg NH\textsubscript{4}-N/l. Insgesamt wird auf die noch fehlende Wurzelausbildung zu Beginn der Bestandssetablierung geschlossen.

**Zur Vermeidung von möglichen Grundwasserbelastungen mit Stickstoff sollte gerade die Aufbauphase von Kurzumtriebsplantagen besonders berücksichtigt werden.**

Anfänglich erhöhte Konzentrationen für andere Hauptnährelemente zeigten sich bei den Untersuchungen von Wolf (2004) nur sehr bedingt. So lagen z.B. lediglich die Phosphatkonzentrationen der Variante „plus Flexoron“ in 20 cm mit 0,3 mg PO₄-P/l leicht über den Vergleichsvarianten. In 90 cm Bodentiefe lagen alle Varianten mit anfänglichen Werten um 0,3 bis 0,5 mg PO₄-P/l über dem im weiteren Verlauf gemessenen Bereich von deutlich unter 0,1 mg PO₄-P/l. Auch Kalium und Kalzium zeigten für alle getesteten Varianten im Oberboden erhöhte Anfangsgehalte (K = 10-25 mg/l; Ca = 40-50 mg/l), wobei die Ca-Konzentrationen insgesamt sprunghaft und schnell auf ein Niveau von deutlich unter 10 mg/l sanken, während sich die Konzentrationen von Kalium zwischen den Varianten eher indifferent verhielten und insgesamt nur relativ wenig abfielen. Ähnliches gilt auch für die ebenfalls von Wolf (2004) dokumentierte Konzentration an Magnesium in der Bodenlösung.


Bei der Flächenvorbereitung zur Anlage einer KUP auf Grünland oder Grünbrache muss zwischen dem Risiko einer anfänglich erhöhten Nitratbelastung des Sickerwassers einerseits und Beeinträchtigungen des Bestandswachstums (z.B. durch Mäusefraß) andererseits abgewogen werden.

4.2.2 Versauerung und Auswaschung von Nährstoffen

einen Wert von 3,8 bis 4,2, so muss mit einer drastischen Minderung der Basensättigung, der Beeinträchtigung des Wurzelwachstums (Aluminiumtoxizität) und der Störung des Bodenlebens durch Säurestress (u.a. Zersetzungshemmung) gerechnet werden.

Soll eine mehr oder weniger stark aufgekalkte, ehemals landwirtschaftlich genutzte Fläche in eine mit Waldbäumen (Pappel, Weide, Robinie) bestockte Fläche umgewandelt werden, so ist allein zur Ertragssicherung bzw. zur Verbesserung der Wachstumsbedingungen keine weitere Kalkung mehr nötig. In den meisten Fällen werden die Vorräte insbesondere an Ca und Mg aus der Vornutzung ausreichen, um mehrere Anbauzyklen eines Kurzumtrags quantitativ (Aufrechterhaltung der Nährstoffversorgung) und qualitativ (Beibehaltung eines pH-Niveaus > pH 4,2) zu sichern (vgl. Makeschin et al. 1989, Jug et al. 1999b).

Mögliche qualitative Veränderungen sind allerdings zu erwarten, wenn ärmer, relativ saure Standorte mit geringerem C-Gehalt und vorwiegend sandiger Textur ohne jede weitere Kalkung in KUP umgewandelt werden. Hier muss damit gerechnet werden, dass es innerhalb von wenigen Jahren zu einem deutlichen Abfall der pH-Werte im Oberboden (Pflughorizont) kommen kann. Damit können folgende Prozesse verbunden sein:

1. Die erhöhte Mobilität bzw. Auswaschung von basischen Kationen (K, Ca, Mg),
2. die Mobilisierung bzw. Auswaschung von pH-löslichen Schwermetallen wie z.B. Cd aus der P-Düngung und
3. die Destabilisierung der organischen Bodensubstanz.

Der Prozess der Oberbodenversauerung durch eine aussetzende Kalkzufuhr kann phasenweise noch verstärkt werden durch die Bildung von Nitratn, die bei der schubartigen Mineralisation von Ernte- und Pflanzenrückständen entstehen. Dabei kann es zur zusätzlichen Tiefenverlagerung oder Auswaschung von Nährstoffen und Schwermetallen kommen, was letztlich zum Verlust an Puffersubstanz im Oberboden und/oder zur Belastung des Grundwassers führen kann.


Von ähnlichen Befunden berichtet auch Wolf (2004) aus sächsischen Untersuchungen. Dabei fiel im Extremfall der pH-Wert (gemessen in KCl), am Versuchsstandort Nochten (20jähriger Kippenstandort, Regosol aus flachem Sandlehm) innerhalb von vier Jahren von 6,4 auf 4,0. Bei den anderen vier Versuchsstandorten mit natürlich gewachsenen Böden sank der pH-Wert von 5,2-6,9 wiederum um ca. 0,5 Einheiten, aber nicht unter 4,8 (Standort Thammenhain, 0-30 cm, Bodentiefe). Der starke Abfall der pH-Werte am Standort Nochten wird auf die nachlassende Wirkung der Meliorationskalkung zurückgeführt, die auf dem armen, tertiären Ausgangsmaterial zu Beginn der Rekultivierung durchgeführt wurde.
4.2.3 Erhöhter Wasserverbrauch, Reduktion der Grundwasserneubildung

Ökologische Betrachtungen zum Wasserhaushalt von Kurzumtriebsplantagen können nach folgenden drei Gesichtspunkten gegliedert werden:

- Sicherung des Pflanzenwachstums durch eine ausreichende Versorgung mit Niederschlägen,
- Berücksichtigung der nutzbaren Wasserspeicherkapazität (nWK) des jeweiligen Bodens,
- Einbeziehung der jeweiligen Funktion und Rate der Grundwasserneubildung (GWN).


Nach neuen Untersuchungen zum Wasserhaushalt im Rahmen des Projektverbunds DENDROM (Knur et al. 2007) liegen die Raten der Evapotranspiration im Mittel für zwei Pappelbestände (Standort Neuruppin in Brandenburg) im dreijährigen Umtrieb bei ca. 60 % (351 mm) der Jahresniederschläge (586 mm). Im neunjährigen Umtrieb liegt die Evapotranspiration ebenfalls bei 61 % (360 mm), bei mittleren Jahresniederschlägen von 591 mm. Dagegen hat die Umtriebszeit offensichtlich einen deutlichen Einfluss auf die Interzeptionsverdunstung (Oberflächenverdunstung im Kronenraum). Nach den Daten von Knur et al. (2007) gehen im Schnitt im dreijährigen Umtrieb zusätzlich 118 mm des Niederschlags durch die Interzeption verloren (= 20 %). Im neunjährigen Umtrieb liegt die Rate wegen des deutlich größeren Kronenraums bei etwa 172 mm und damit bei 29 % der Niederschläge. Für die Tiefenversickerung und damit für die potenzielle GWN verbleiben daher im dreijährigen Umtrieb insgesamt 20 % (117 mm), im neunjährigen Umtrieb jedoch nur etwa 10 % (ca. 59 mm) der eingehenden Freilandniederschläge.

Der von Knur et al. (2007) vorgenommene Vergleich zur benachbarten, konventionell bewirtschafteten Ackerfläche zeigt, dass hier deutlich höhere Raten der Tiefenversickerung auftreten, nämlich im Mittel ca. 223 mm und damit knapp 37 % der eingehenden Niederschläge.

Im vorliegenden Fall führt die Anlage von Kurzumtriebsplantagen im Vergleich zum konventionellen Ackerbau zu einer signifikanten Verringerung der Versickerung und damit zur Abnahme der potenziellen Grundwasserneubildung um den Faktor von nahezu 2 (bei dreijährigem Umtrieb) bis ca. 3 (neunjähriger Umtrieb).
Gleichzeitig zeigen jedoch die Analysen, dass unter den lokalen Gegebenheiten (hier ca. 600 mm Jahresniederschlag)

1. eine ausreichende Wasserversorgung der Bestände allein aus dem Niederschlag gegeben ist,
2. dass dadurch der Wasserspeicher im Boden (nWK) allein für die Pufferung von möglichen Trockenphasen während der Vegetationszeit genutzt werden kann und
3. eine Grundwasserneubildung trotz z.T. deutlicher Verringerung der Raten durch die Kurzumtriebsplantagen weiterhin gewährleistet ist.

Mögliche saisonale Schwankungen der Niederschlagsversorgung – insbesondere länger anhaltende Trockenphasen – wurden bei diesen Betrachtungen bisher jedoch nicht berücksichtigt. Diese wirken sich besonders dann negativ für die Pflanze und für die GWN aus, wenn z.B. in der Vegetationsperiode die Evapotranspiration größer ist als die nWK, oder wenn gerade zu Beginn einer Vegetationsphase eine Trockenphase auftritt, ohne dass die Bodenspeicher im Winter genügend aufgefüllt wurden. In solchen Fällen sind vor allem Standorte (z.B. Fließ- und sonstige Gewässer, Systeme zur Grundwassergewinnung etc.) gefährdet, bei denen die Tiefenversickerung im Schnitt bereits bei weniger als 10-20 % der Niederschläge liegt. Im oben gewählten Beispiel von Knur et al. (2007) wären das also eher die Pappelbestände mit neunjährigem als mit dreijährigem Umtrieb.

Eine starke Reduktion oder gar der Wegfall der Tiefenversickerung kann auch als positive Wirkung von Kurzumtriebsplantagen betrachtet werden.


4.2.4 Erhöhter Eintrag von atmosphärischen Stoffen


In Regionen mit hohem Viehbesatz und viel Gülle kann die Ausfilterung von Ammonium in angrenzenden Waldbeständen - und damit auch in KUP - von erheblicher Bedeutung sein.

Feldmessungen zu atmosphärischen Stoffeinträgen in Kurzumtriebsplantagen sind rar. Messungen von Meiressonne et al. (2007) für einen auf einer Wiese in Belgien angelegten 18-jährigen Pappelbestand zeigen jedoch, dass der gemittelte Gesamt-N-Eintrag jährlich bis zu 19 kg/ha betragen kann, wobei ca. 2/3 als NH₄ und 1/3 als NO₃ vorliegen und ca. 3-5 kg des Gesamteintrags auf den oben geschilderten Prozess der Interzeptionsdeposition zurückgeführt werden. Im Verhältnis zu den insgesamt umgesetzten N-Mengen (hier jährlich ca. 90 kg N kg/ha, davon ca. 80 % als interner Eintrag über den Streufall mit Wiederaufnahme durch den Bestand)
spielt die Interzeptionsdeposition sicher nur eine untergeordnete Rolle. Dennoch kann diese besonders in Gebieten mit einer hohen NH₃-Emission aus der Landwirtschaft (Beispiel Oldenburger Raum) an Bedeutung gewinnen, besonders wenn neu angelegte Kurzumtriebsplantagen in einer ausgeräumten Landschaft angelegt werden und so eine erste Barriere für atmosphärische N-Verbindungen bilden. In solchen Fällen könnten besonders die Randzonen im Luvbereich von Anpflanzungen und damit die oftmals dort verlaufenden Gewässersysteme einer zusätzlichen Belastung ausgesetzt sein.

4.3 Schlussfolgerungen aus bodenökologischer Sicht

Aus bodenökologischer Sicht und zur Sicherung der Interessen des Natur- und Umweltschutzes ergeben sich für den Betrieb von KUP folgende Anforderungen:

- Vor der Anlage einer KUP müssen die bodenkundlich-standörtlichen Gegebenheiten flächengenau erfasst und dokumentiert werden.
- Aus der standortkundlichen Analyse müssen angepasste Anbau- und Bewirtschaftungskonzepte abgeleitet werden.
- Düngungsmaßnahmen sollten, wenn überhaupt, nur nach einer vorherigen Bedarfsanalyse und frühens nach der ersten Vegetationsperiode durchgeführt werden.
- Zum Schutz vor Bodenerosion sollte im geneigten Gelände eine hangparallele Bewirtschaftung erfolgen.

Abb. 6 und 7: Neuanlage von KUP-Versuchsflächen am Standort Sudheide (LK Gütersloh) im Rahmen des von der DBU geförderten Projektes NOVALIS
5. Pflanzenartenvielfalt


5.1 Einflüsse auf die Pflanzenartenvielfalt in KUP


5.1.1 Wahl der Umgebung


5.1.2 Flächengröße der Energieholzplantage

Aus naturschutzfachlicher Sicht ist es interessant, wie groß eine KUP sein sollte, um möglichst vielen Pflanzen einen Lebensraum zu bieten und ab welcher Flächengröße mit einheitlicher Bestandsstruktur und Behandlung keine weitere Zunahme der Arten erfolgt.

5.1.3 Vornutzung

Ohne eine intensive mechanische und/oder chemische Flächenvorbereitung wie im Ackerbau bestimmen neben eingewanderten Arten die Pflanzen aus der Samenbank die Artenzusammensetzung der KUP-Begleitvegetation (vgl. Kap. 5.1.4, Stoll & Dohrenbusch 2008). Die Samenbank wiederum rekrutiert sich aus Arten der vorhergehenden Landnutzung.


Die Vornutzung beeinflusst die Pflanzenzusammensetzung einer KUP auf unterschiedliche Art. KUP auf ehemaligen Grünlandstandorten beherbergen in der Tendenz vergleichsweise viele Arten der Vornutzung. Die Anlage von KUP auf Moorstandorten scheint dagegen zu einer deutlichen Veränderung der Artenzusammensetzung zu führen. Für eine stichhaltige Bewertung möglicher schädigender Auswirkungen von KUP auf Moorstandorten fehlen in Deutschland aber bisher noch Grundlageninformationen.

5.1.4 Flächenvorbereitung


Chemische Bekämpfung


**Mechanische Bekämpfung**


![Abb. 9: Großblättriger Pappel-Klon (NE 42)](image)

Der Einsatz von Herbiziden zur Bekämpfung der Begleitvegetation verändert deren Artenzusammensetzung und wirkt sich negativ auf die Pflanzenartenvielfalt in KUP aus. Daher sind mechanische Bekämpfungsmaßnahmen zu bevorzugen bzw. kombinierte Verfahren einsetzen, die den Einsatz chemischer Behandlungsmittel auf ein Mindestmaß reduzieren.

**5.1.5 Baum- und Sortenwahl**


Die Bodenflora erreichte unter Weide auf beiden Plantagenteilen eine etwa doppelt so hohe Sprossmasse, wie die auf den mit Aspe bestockten Parzellen (Heilmann et al. 1995). Eine mögliche Konkurrenz um knappe Wasserressourcen kann ebenfalls die Entwicklung der Begleitflora beeinträchtigen. So führte die starke Verdunstung von Weiden in einer KUP dazu, dass die oberirdische Biomasse der Begleitvegetation auf den feuchteren Teilflächen stets größer als die der trockeneren Flächen war (Heilmann et al. 1995).

5.1.6 Alter / Rotation


Kurze Umtriebszeiten (< 3 Jahre) verhindern den weitgehenden Bestandsschluss und erhalten dadurch eine lichtliebende Begleitvegetation. Längere Umtriebszeiten führen zu einer Entwicklung von lichtliebender Vegetation zu schattenertragender Vegetation (Waldarten), die sich nach jedem Umtrieb vermutlich wiederholt. Informationen aus Langzeitbeobachtungen hierzu fehlen aber bisher.
5.2 Auswirkungen von KUP

5.2.1 Artenschutz


Gefährdete Arten treten vorwiegend in den ersten Jahren einer KUP auf. Es sind insbesondere lichtliebende Pionierarten, die mit zunehmendem Alter der KUP verdrängt werden. Inwieweit die gefährdeten Arten nach einmaliger Ausdunkelung zu Beginn der nächsten Rotation wieder auftreten, ist bisher nicht bekannt.

5.2.2 Artenvielfalt der umgebenden Landschaft

Eine entscheidende Frage bei der Bewertung von KUP ist deren Wirkung auf die Pflanzenvielfalt der umgebenden Landschaft. Eine Steigerung der Pflanzenvielfalt durch die Anlage von Energieholzbeständen wird in Schweden insbesondere bei stark agrarisch geprägten Gebieten und Flächen auf degradierten Böden angenommen (Gustafsson 1987, Weih et al. 2003). Untersuchungen in Deutschland zeigen, dass eine Fläche


5.3 Schlussfolgerungen aus pflanzenökologisch-naturschutzfachlicher Sicht

Beim gegenwärtigen Stand des Wissens ist bei der Gestaltung von KUP aus floristischer Sicht zu achten auf

- Kurze Einwanderungsstrecken von Pflanzen aus unterschiedlichen Landnutzungsarten (Wald, Acker, Brache, Grünland),
- Bevorzugung von kleinen, strukturierten KUP-Bestandsflächen (homogene Bestandsblöcke ≤ 1 ha),
- die Verwendung von unterschiedlichen Baumarten bzw. Klonen auf einer Fläche,
- unterschiedliche Altersstrukturen bzw. Umtriebszeiten in einer KUP,
- Zulassen von Bestandslücken und Schaffung von Randstrukturen zu anderen Landnutzungen,
- Vermeidung von Herbizideinsatz (chemischen Bekämpfungsmethoden),
- Bevorzugte Anlage in ausgeräumten, waldarmen Landschaften.
6. Tierartenvielfalt

6.1 Einführung


Im Folgenden wird versucht, erste Tendenzen aufgrund von Literaturauswertungen und aufgrund eigener Ergebnisse aus dem NOVALIS-Projekt herauszustellen.

6.2 Bisheriger Kenntnisstand zur Zoodiversität

6.2.1 Allgemeine Besiedlung von KUP durch Tiere


6.2.2 Zoodiversität in Abhängigkeit von betrachteter Vergleichsfläche und Tiergruppe


6.2.3 Eignung als Habitate für Rote-Liste-Arten


6.2.4 Positive Beeinflussung durch Baumartenwahl bzw. negative durch Neophyten


Aus tierökologischer Sicht sollte man allgemein autochthone Gehölzarten und deren Hybride bevorzugen oder zumindest beimischen. Weiden sind wegen ihrer Blüten, ihrer Strukturbereicherung und ihres hohen Phytophagenpotenzials am günstigsten.


6.2.5 Positive Beeinflussung durch Strukturreichtum und Begleitstrukturen

Strukturreichtum ist ein Schlüsselfaktor für Artenreichtum. Strukturreiche Gehölzblöcke und insgesamt heterogen zusammengesetzte KUP erhöhen die Vogeldiversität und Brutvogeldichte (Gruß & Schulz 2008a,b, Schulz et al. 2008b).


6.2.6 Einfluss von Alter und Umtriebsstadium (frische Rodungsfläche bis Reifephase)

Makeschin et al. (1989) zeigen, dass die Regenwurmfauna drei Jahre nach Begründung einer KUP deutlich zunahm, was sie als Indiz für die biologische Regenerierung des Bodens interpretieren. Eine Zunahme der Waldarten mit höherem Alter der KUP kann bei Webspinnen (Blick & Burger 2002), Brutvögeln (Gruß & Schulz 2008a) und Laufkäfern (Brauner & Schulz 2008, Schulz et al. 2008a) belegt werden. Dies ist naheliegend, da die eher waldbildändische Fauna Zeit braucht, um die Flächen zu besiedeln und da sich waldbildändische Strukturen und ein waldbildändisches Innenklima erst entwickeln müssen.

Die Besiedlung von Energieholzflächen durch Vögel hängt stark vom Alter und der damit einhergehenden Vegetationsstruktur ab (Gruß & Schulz 2008b). Ältere KUP sind aber nicht zwangsläufig artenreicher als junge KUP. Bezüglich der Brutvögel erreichten die zwei- bis fünfjährigen Bestände auf der hessischen KUP (Georgenhof) die höchsten Arten- und Individuendichten (Gruß & Schulz 2008a).


6.2.7 Einfluss von Flächengröße und Ökotoneffekt

Im Rahmen des NOVALIS-Projekts konnte auf der hessischen KUP Georgenhof gezeigt werden, dass die Brutvögel verstärkt die Randbereiche der jeweiligen Pappelblöcke besiedeln (Gruß & Schulz 2008b). Zur Mitte hin sind demgegenüber sind nur noch wenige Arten und diese in geringer Brutdichte zu finden (Gruß & Schulz 2008a). Dies gilt jedoch nicht für homogene, frisch angelegte bzw. frisch bebrütete Flächen sowie für KUP, die durch Ausfall einzelner Pflanzenblöcke eine sehr hohe Heterogenität aufweisen und damit flächig ein Strukturmosaik aus Gehölzen und offenen Bereichen aufweisen (Gruß & Schulz 2008a,b,c). Hier ist eine Konzentration von Brutpaaren in den Randbereichen bzw. eine Dichteabnahme in Richtung des Bestandszentrums weniger deutlich.

Tierartenvielfalt

zonen der KUP besiedeln. Dieser Ökotoneffekt zeichnet sich zusätzlich bei anderen Tiergruppen ab (Cunningham et al. 2004).


Gleichzeitig ist zu beachten, dass die Raumansprüche von typischen Offenlandarten nicht durch einen zu kleinteiligen Strukturreichtum unterschritten werden und so das Besiedlungspotenzial maßgeblich gesenkt wird. Dies gilt insbesondere für Vögel der offenen bis halboffenen Feldflur (Gruß & Schulz 2008a,b,c). Gerade diese Avizönosen sind derzeit durch starke Bestandsrückgänge betroffen. Neu angelegte oder frisch beermerte KUP sind grundsätzlich geeignet, zumindest temporär in der ersten bis zweiten Vegetationsperiode nach Anlage oder Ernte eine Funktion als Ersatzhabitate zu erfüllen.

6.2.8 Vergleich von KUP und Grünland


Je nach Vegetationsstruktur, Einbindung in die Landschaft, Nutzungsintensität oder langjährigem Vorkommen seltener Tierarten kann das betroffene Grünland also faunistisch-naturschutzfachlich sehr wertvoll oder eher uninteressant sein. In Abhängigkeit davon müsste lokal entschieden werden, ob eine Energieholzfläche positive oder negative Auswirkungen hat. Im Sinne des Vorsorgeprinzips sollten KUP allerdings möglichst nur auf großräumigen, intensiv bewirtschafteten Grünlandstandorten angelegt werden (solange sie keine schützenswerten Wiesenbrütervorkommen aufweisen oder z. B. Rastplätze für Zugvögel sind).

### 6.2.9 Vorrang- und Tabuflächen aus Zoodiversitätssicht


**Abb. 11 und 12:** In ausgeräumten Ackerbauregionen profitieren Feldvögel wie Goldammer und Feldsperling besonders von KUP-Gehölzen.
6.3 Schlussfolgerungen aus tierökologisch-naturschutzfachlicher Sicht


Die tierökologische und naturschutzfachliche Wertigkeit von KUP kann durch bestimmte Maßnahmen deutlich verbessert werden. Dazu werden im Folgenden einige Vorschläge gemacht. Sie basieren auf vorläufigen Literaturauswertungen und Ergebnisanalysen im Rahmen des NOVALIS-Projekts und werden in Anlehnung an Jedecke (1995) und Schulz et al. (2008c) formuliert:

- Agrarholzflächen können ausgeräumte, gehölzarme Landschaften tierökologisch bereichern; günstig wäre die Anlage in intensiv bewirtschafteten Ackerbauregionen.
- Energieholzflächen dürfen nicht in naturschutzfachlich wertvollen Offenlandgebieten (z.B. Magerrasen, Wiesenbrüterflächen, Bachauen, Waldwiesen) oder anderen Tabugebieten (z.B. Naturschutzgebiete) angelegt werden.

Die tierökologisch-faunistische Bedeutung von Energieholzflächen hängt (wie oben erörtert) stark von verschiedenen Faktoren wie Gehölzzusammensetzung, Alter, Rotationsstadium, Flächengröße und Strukturreichtum ab. Folgende Empfehlungen aus tierökologischer Sicht können deshalb bereits jetzt gegeben werden:

- Weide und Pappel wählen, möglichst wenig Robinie oder andere neophytische Gehölzgattungen (allenfalls in Beimischung),
- autochthone Gehölzarten bevorzugen,
- unterschiedliche Baumarten und Züchtungen anpflanzen,
- Mischung verschiedener Altersstadien bzw. verschieden alter Umtriebsstadien in räumlicher Nähe einander anlegen (Umtriebsstadienmosaik),
- in bereits stärker strukturiertem Gelände kleine Plantagen mit mehreren kleinen Blöcken anlegen,

7. Landschaftsökologische Betrachtung

7.1 Kurzumtriebsplantagen als Landnutzungssysteme


7.2 Wirkfaktoren und Wirkkomplexe von Kurzumtriebsplantagen


- Grundwasserneubildung
- Retention von Niederschlägen
- Bodenerosion durch Wind und Wasser
- Veränderung des Humusgehalts
- Bodenverdichtung
- Eintrag von Düngungs- und Pflanzenschutzmitteln in Boden, Grundwasser und Oberflächengewässer
- Klimatischer Ausgleich und Luftreinhaltung
- Veränderung von Lebensräumen
- Veränderung des Landschaftsbilds.

Tabelle 7: Landnutzungsänderung durch Anbau von Agrarholz: Wirkfaktoren und deren Bezug zu Wirkkomplexen

<table>
<thead>
<tr>
<th>Nutzungsphasen</th>
<th>Arbeitsschritte/Verfahren/Kultureigenschaften</th>
<th>Wirkfaktoren</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grundwasserneubildung</td>
</tr>
<tr>
<td>Standortvorbereitung</td>
<td>Mechanische Bodenbearbeitung</td>
<td>Zerstörung der Begleitflora</td>
</tr>
<tr>
<td></td>
<td>Verlust von Bodenlebewesen</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fahrspreizen, Maschinenlast</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Geräuschemissionen</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Stoffl. Emissionen</td>
<td>-</td>
</tr>
<tr>
<td>Einsatz von Voraufauflaufherbiziden</td>
<td>Stoffl. Emissionen</td>
<td>-</td>
</tr>
<tr>
<td>Düngung</td>
<td>Stoffl. Emissionen</td>
<td>-</td>
</tr>
<tr>
<td>Kulturbegründung</td>
<td>Manuelles Pflanzen</td>
<td>Schwemmung</td>
</tr>
<tr>
<td></td>
<td>Geräuschemissionen</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Pflanzenmaschineninsatz</td>
<td>Fahrspreizen, Maschinenlast</td>
</tr>
<tr>
<td></td>
<td>Geräuschemissionen</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Stoffl. Emissionen</td>
<td>-</td>
</tr>
<tr>
<td>Kulturfläche</td>
<td>Flächenanlage</td>
<td>Flächenmaß</td>
</tr>
<tr>
<td></td>
<td>Pflanzdichte</td>
<td>Änderung chem. und physikal. Bodenparameter</td>
</tr>
<tr>
<td></td>
<td>Baumart</td>
<td>Änderung Bestandshöhe</td>
</tr>
<tr>
<td></td>
<td>Änderung Vegetationsstruktur</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>Änderung Wasserverbrauch</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>Änderung Wurzelwachstum</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>Änderung der Streusicht</td>
<td>++</td>
</tr>
<tr>
<td>Kulturpflege</td>
<td>Mechanische Begleitwuchsregulierung</td>
<td>Zerstörung der Begleitflora</td>
</tr>
<tr>
<td></td>
<td>Auflockerung des Oberbodens</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Zerstörung des Kapillarpegels</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fahrspreizen, Maschinenlast</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Geräuschemissionen</td>
<td>-</td>
</tr>
<tr>
<td>Chemische Begleitwuchsregulierung</td>
<td>Stoffl. Emissionen</td>
<td>-</td>
</tr>
<tr>
<td>Düngung</td>
<td>Stoffl. Emissionen</td>
<td>-</td>
</tr>
<tr>
<td>Ernte</td>
<td>Geräuschemissionen</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Schwemmung</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fahrspreizen, Maschinenlast</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Stoffl. Emissionen</td>
<td>-</td>
</tr>
<tr>
<td>Rückführung</td>
<td>Entfernen der Wurzelstümpfe</td>
<td>Lockierung des Pflughorizonts</td>
</tr>
<tr>
<td></td>
<td>Belüftung des Pflughorizonts</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Zerstörung des Kapillargebäudes</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Zerstörung von Lebensräumen</td>
<td>-</td>
</tr>
</tbody>
</table>

Art der erwarteten Wirkung:  + positiv, - negativ, +- indifferent, Einzelfallprüfung
Intensität der Wirkung: hoch: xx  gering: x
Wirkkomplexe und ihr Bezug zu Landschaftsfunktionen

Für diese Studie werden Landschaftsfunktionen und ihre potenzielle Beeinträchtigung als Bindeglied zur naturschutzfachlichen Bewertung verwendet. Landschaftsfunktionen umfassen die derzeitige und potenzielle Leistungsfähigkeit der Landschaft zur nachhaltigen Erfüllung der menschlichen Ansprüche an den Naturhaushalt und das Landschaftserleben.

Tabelle 8a veranschaulicht, dass die identifizierten Wirkkomplexe auf diverse Landschaftsfunktionen einwirken. Damit sind grundsätzlich sowohl positive als auch negative Wechselwirkungen möglich. Tabelle 8b umreißt zudem die wichtigsten Aspekte potenziell negativer und positiver Wirkungen auf die einzelnen Landschaftsfunktionen.

Die Wechselwirkungen machen deutlich, dass eine ökologische Bewertung von Kurzumtriebsplantagen (a) im jeweiligen Landschaftskontext erfolgen muss und (b) einer Abwägung bedarf, ob und welche Beeinflussung von Landschaftsfunktionen im jeweiligen Landschaftskontext anzustreben bzw. zu vertreten ist.

<table>
<thead>
<tr>
<th>Tabelle 8a: Wirkkomplexe und ihr Bezug zu Landschaftsfunktionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundwasser­dargebotsfunktion</td>
</tr>
<tr>
<td>Grundwasser­schutzfunktion</td>
</tr>
<tr>
<td>Erosionsschutz­funktion</td>
</tr>
<tr>
<td>Abflussregulations­funktion</td>
</tr>
<tr>
<td>Lebensraumfunktion</td>
</tr>
<tr>
<td>Klimatische Ausgleichsfunktion</td>
</tr>
<tr>
<td>Ertragsfunktion</td>
</tr>
<tr>
<td>Landschaftserlebnisfunktion</td>
</tr>
</tbody>
</table>
Tabelle 8b: Zusammenfassende Betrachtung von potenziellen Risiken und Optionen durch KUP

<table>
<thead>
<tr>
<th>Landschaftsfunktion</th>
<th>Potenzielle Risiken</th>
<th>Potenzielle Optionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erosionsschutzfunktion</td>
<td>Gefahr der Verdichtung durch schweren Maschineneinsatz (im Vergleich zur landwirtschaftlichen Nutzung aber deutlich reduzierte Bearbeitungsfrequenz).</td>
<td>Ganzjährige Flächenbedeckung. Humusaufbau und Durchwurzelung reduzieren die Erosion. Durch Anlage von Schutzstreifen kann die Erosion auf Ackerflächen reduziert werden.</td>
</tr>
<tr>
<td>Ertragsfunktion</td>
<td>Grundwasserabsenkenzung</td>
<td>Erhöhung des Humusspiegels. Tiefenlockerung des Bodens durch Regenwürmer.</td>
</tr>
</tbody>
</table>

7.3 Einfluss auf Entwicklungsziele von Landschaftsfunktionen

Grundwasserdargebotsfunktion


Tabelle 9: Potenzielle Konflikte mit Entwicklungszielen von Landschaftsfunktionen durch den Anbau von Agrarholz

<table>
<thead>
<tr>
<th>Landschaftsfunktion</th>
<th>Entwicklungsziele</th>
<th>Zielkonflikte durch Anlage von KUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundwasserdargebotsfunktion</td>
<td>Extensive Nutzung in Gebieten mit hohen Sickerwasserraten und hoher Grundwasserneubildungsrate</td>
<td>Einzelfall</td>
</tr>
<tr>
<td></td>
<td>Extensive Nutzung in Gebieten mit hohen Sickerwasserraten und geringer Grundwasserneubildungsrate</td>
<td>ja</td>
</tr>
<tr>
<td>Grundwasserschutzfunktion</td>
<td>Reduzierung von Düngemittel- und Pestizidaustrag</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td>Reduzierung der Nutzung auf Böden mit geringem Filter-, Puffer- und Transformationsvermögen</td>
<td>nein</td>
</tr>
<tr>
<td>Erosionsschutzfunktion</td>
<td>Reduzierung der Bodenverdichtung</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td>Erhalt des Humusspiegels</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td>Erosionsschutzmaßnahmen auf disponierten Standorten</td>
<td>nein</td>
</tr>
<tr>
<td>Abflussregulationsfunktion</td>
<td>Verbesserung der Retention z.B. durch Schlaggestaltung</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td>Retentionsstreifen</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td>Erhalt/Umwandlung in Grünland</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>Schaffung von Retentionsräumen</td>
<td>indifferent</td>
</tr>
<tr>
<td>Lebensraumfunktion</td>
<td>Erhöhung des Natürlickeitsgrades der Vegetation</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>Erhalt extensiver Nutzungen</td>
<td>Einzelfall</td>
</tr>
<tr>
<td></td>
<td>Senkung der Nutzungsdichte</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td>Veränderung der Landschaftsstruktur</td>
<td>Einzelfall</td>
</tr>
<tr>
<td></td>
<td>Schutz wichtiger Biotopverbundbeziehungen</td>
<td>Einzelfall</td>
</tr>
<tr>
<td></td>
<td>Erhöhung des Anteils wertvoller Biotoptypen</td>
<td>Einzelfall</td>
</tr>
<tr>
<td></td>
<td>Verminderung der Isolationswirkung</td>
<td>Einzelfall</td>
</tr>
<tr>
<td></td>
<td>Erhalt großräumig störungsarmer Gebiete</td>
<td>indifferent</td>
</tr>
<tr>
<td></td>
<td>Erhalt/Wiederherstellung von Feuchtwiesen</td>
<td>ja</td>
</tr>
<tr>
<td>Klimatische Ausgleichsfunktion</td>
<td>Erhalt von Kaltluftschneisen</td>
<td>Einzelfall</td>
</tr>
<tr>
<td></td>
<td>Förderung von klimatischen Ausgleichsflächen</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td>Verbesserung der Luftqualität</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td>Verringerung klimarelevanter Emissionen aus der Landwirtschaft</td>
<td>nein</td>
</tr>
<tr>
<td>Ertragsfunktion</td>
<td>Erhalt landwirtschaftlich wertvoller Flächen für die Nahrungsmittelproduktion</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td>Erhalt leistungsfähiger Böden</td>
<td>nein</td>
</tr>
<tr>
<td>Landschaftserlebnisfunktion</td>
<td>Erhalt und Wiederherstellung der Kultur- und Erholungslandschaft durch naturverbäglichere Landwirtschaft</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td>Erhalt und Entwicklung eines Systems naturnaher Flächen</td>
<td>indifferent</td>
</tr>
<tr>
<td></td>
<td>Erhalt/Förderung der landschaftlichen Kleinstrukturen</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td>Erhalt charakteristischer Landschaftsbilder</td>
<td>Einzelfall</td>
</tr>
</tbody>
</table>
Grundwasserschutzfunktion

⇒ **KUP-Flächen können einen Beitrag zum Grundwasserschutz leisten, wenn sie in Bereichen mit a) hohem Düngemittelteintrag, b) hoher Viehbesatzdichte, c) hohen Sickerwasserraten, d) hohen Erosionsraten etabliert werden. Hierbei sind potenzielle Konflikte mit anderen Zielfunktionen abzuwägen.**

Erosionsschutzfunktion

⇒ **Besonders effektiv kann der Erosionsschutz durch KUP gestaltet werden, wenn Flächen etabliert werden, die außerdem eine hohe Bedeutung für den Grundwasserschutz zeigen oder für die Abflussregulation von Bedeutung sind. Um solche Flächen identifizieren zu können, ist ein landschaftsbezogener Planungsansatz nötig, der vorhandene Umweltqualitätsziele und Landschaftsqualitätsziele übergreifend bewertet.**

Abflussregulationsfunktion

⇒ **Geoökologische Raumeinheiten, die besonders auf die Wasserflüsse ausgerichtet sind, können helfen, relevante Flächen für die Abflussregulation auszuweisen.**

Lebensraumfunktion
Kurzumtriebsplantagen stellen als Monokultur mit vorwiegend gebietsfremden Arten einen potenziellen Zielkonflikt dar. Ob der Einfluss von KUP auf die pflanzliche und die faunistische Biodiversität auf der Landschaftsebene negativ oder positiv zu bewerten ist, kann nicht generell beantwortet werden.


Für die Vogelwelt spielen die Randstrukturen, das Alter der Flächen und das Rotationsmanagement eine bedeutende Rolle. Die Vorteile von kleinen Flächen mit möglichst großen Kantenlängen für die Vielfalt der Avifauna müssen gegenüber potenziellen Nachteilen für den Landschaftswasserhaushalt abgewogen werden. Lange Umtreibszeiten, die aus waldbaulicher Sicht bevorzugt werden, sind für die Pflanzenwelt (Lichtmangel) und die Vögel nicht von Vorteil. Kleine Einzelflächen, die aus tierökologischer Sicht zu bevorzugen sind, können zu einer Isolierungswirkung auf Landschaftsebene beitragen.

Bei der Frage, ob Strukturelemente in Form von Kurzumtriebsplantagen zur Bereicherung einer Landschaft beitragen, oder die Durchlässigkeit von Offenlandlebensräumen beeinträchtigen, benötigt man eine landschaftsökologische Strukturanalyse. Ein bekanntes Beispiel in der naturschutzfachlichen Diskussion ist die Kulissenwirkung von Energieholzflächen für Wiesenbrütervorkommen. Als Indikator für die Bewertung kommt z.B. die Schlaggröße der vorhandenen Landwirtschaftsflächen (bzw. deren Zielgröße) und die Landschaftskomposition in Betracht.

Landschaftsstrukturendikatoren können helfen, Flächenmaße und eine Flächenverteilung zu finden, die dem bestehenden Landschaftstyp entsprechen bzw. mit den Zielvorstellungen harmonisieren.

Mehrfacheffekte bewirken. Inwieweit die Grünlandumwandlung in KUP eine hohe Freisetzung von klimawirksamen Gasen bewirkt, ist bislang nicht ausreichend bilanziert worden. Hierbei muss ebenfalls die große Bandbreite der Grünlandnutzung und der ökologischen Rahmenbedingungen berücksichtigt werden.

**Klimatische Ausgleichsfunktion**


**Ertragsfunktion**


**Landschaftserlebnisfunktion**

Landschaftsökologische Betrachtung

7.4 Schlussfolgerungen aus landschaftsökologischer und naturschutzfachlicher Sicht

Landschaftsanalyse

◆ Die Erfassung von Biototypen und Biotopkomplexen sollte vorangetrieben und mit Zielartenkonzepten für repräsentative Landschaftsmosaike zusammengeführt werden.

Analyse der Zielkonflikte

◆ Auf der Basis von Landschaftseinheiten müssen Entwicklungsziele für die Landschaftsplanung formuliert und potenzielle Zielkonflikte analysiert werden. Die Analyse sollte sich auch an naturschutzfachlichen Kriterienkatalogen zur „Guten fachlichen Praxis“ der Landwirtschaft orientieren.

Schutzgebiete und Puffermaße

◆ Besonders in Gebieten mit Schutzstatus (z.B. Natura 2000) und in räumlicher Nähe zu sensiblen Biotopen müssen Managementpläne mit konkreten Auflagen erarbeitet und Pufferbereiche eingehalten werden.

Landschaftsstruktur und Biotopvernetzung

◆ Wo möglich, sollten existierende Einzelbiotope mit Kurzumtriebsplantagen vernetzt oder Pufferzonen zwischen intensiv genutzten Agrarflächen und Schutzgebieten als KUP etabliert werden.
8. Offene Fragen und Perspektiven

8.1 Grundwasserzehrung


8.2 Bodenerosion, Veränderung des Humusgehalts


Die gut belegte, zusätzliche Speicherung (Sequestrierung) von Kohlenstoff im Mineralboden durch Kurzumtrieb stellt zunächst eine temporäre Kohlenstoffsenke dar. Fraglich ist aber bislang, wie die Kohlenstoffbilanz über den kompletten Zyklus – von der Bestandsbegründung bis zur Rückführung in die Vornutzung – ausfällt und welchen Einfluss die jeweilige Vornutzung (z.B. Grünland, Brache, Acker) auf die C-Bindung hat.

Hier gilt es, praxistaugliche Bewirtschaftungspfade zu entwickeln, die verhindern, dass der durch eine KUP zusätzlich akkumulierte organische Kohlenstoff durch vor- oder nachgelagerte Bodenbearbeitungsmaßnahmen wieder freigesetzt wird.

Unsicherheiten bestehen außerdem hinsichtlich der Nachhaltigkeit der zunächst positiven Auswirkungen von Kurzumtriebsplantagen auf die Bodenmakro- und - Mikrobiologie. Dabei gilt es z.B. zu klären, wie sich mehrfach wiederholte Erntemaßnahmen und die damit verbundene Freilage des Bodens mit veränderten Licht- und Klimaverhältnissen oder was passiert, wenn KUP in Ackerflächen rückgeführt werden. Hier sind vor allem grundlagerorientierte Forschungsvorhaben gefragt, um eine abschließende ökologische Bewertung vornehmen zu können.

8.3 Retention von Niederschlägen


8.4 Veränderung von Lebensräumen

Standort und Bewirtschaftung


Pflanzenartenvielfalt

Die vorliegenden Erkenntnisse zur Phytodiversität basieren meist auf eher kleinen Untersuchungsflächen, die vorwiegend aus Versuchs- und Forschungszwecken angelegt wurden. Diese repräsentieren nicht unbedingt den rationalisierten Betrieb von KUP auf größeren Flächen.

Die Untersuchungsergebnisse zur Artenvielfalt in KUP sind ferner stark lokalspezifisch. Es zeigt sich, dass das Ausmaß der Einflussfaktoren sehr heterogen ist. Um dieses Beziehungsgleit zu ordnen, wären bundesweit verteilte und vergleichbar aufgebaute Versuchsanlagen hilfreich. Dabei sind unterschiedliche Regionen mit unterschiedlichen klimatischen und standörtlichen Verhältnissen zu berücksichtigen. Wichtig sind auch standardisierte Referenzflächen in anderen Landnutzungsformen, um vergleichende Aussagen machen zu können.

Zudem fehlen vor allem Langzeituntersuchungen, die nicht nur die Vegetation während der ersten Umtriebszeit, sondern auch in den folgenden Umtriebszeiten betrachten. Weitgehend unerforscht ist die Bedeutung der Pflanzenvielfalt für die Ökosystemfunktionen in KUP (funktionelle Diversität). Dies betrifft beispielsweise den Einfluss von Artenvielfalt auf die Nährstoffaufnahme und -retention in KUP. Hier ergeben sich enge Beziehungen zum Wasserhaushalt und zur Bodenökologie.


**Tierartenvielfalt**

Gegenwärtig finden die faunistischen Untersuchungen zu Kurzumtriebsplantagen auf Einzelflächen statt, die sowohl hinsichtlich ihrer Altersstruktur als auch in Bezug auf die Bestockung (unterschiedliche Klone, unterschiedliche Arten) nur schwer vergleichbar sind. Darüber hinaus sind die Untersuchungsflächen in verschiedenartige Landschaftsschichten eingebettet, die sich hinsichtlich ihrer natürlichen Ausstattung (Klima, Relief, Wasser, Boden), der aktuellen Landnutzungs muster und der Landschaftsstruktur unterscheiden.

Soll die Bedeutung von Kurzumtriebsplantagen für die Zoodiversität im Landschaftskontext erfasst und für die Landschaftsplanung zugänglich gemacht werden, so müssen die Untersuchungsansätze auch auf die Landschaftsebene ausgedehnt werden. Dabei sollte der Fokus nicht nur auf den bekannten Vorranggebieten des Artenschutzes wie z.B. Magerrasen, Feuchtwiesen, Bodenbrütergebieten, Bachauen oder Brachflächen liegen, sondern auch auf einer systematischen Gliederung von geoökologischen Raumeinheiten, die gleichzeitig Informationen von Biotopkomplexen mit der Landnutzung und der Landschaftsstruktur verbindet. Welche Differenzierung dieser Ansatz erfährt, hängt wesentlich von den Schutz- und Entwicklungszielen und der Maßstabsebene für deren Umsetzung ab. Für eine tierökologische Bewertung besteht Informationsbedarf auf folgenden Ebenen:

1) **Biotoptypen und Biotopkomplexe**
   - Erfassung von Biotoptypen und Biotopkomplexen, Zusammenführung mit geoökologischen Raum einheiten,
   - Durchführung einer landschaftsökologischen Strukturanalyse und Ableitung von Strukturmaßen,
   - Bewertung hinsichtlich ziel- bzw. wertgebender Arten,
   - Bewertung potenzieller Konflikte durch Nutzungsänderung,
   - Bewertung der Sensitivität gegenüber Nachbarbiotopen,
   - Ableitung von Pufferdistanzen,
   - Identifikation von Korridoren und Barrieren.

2) **Artengruppen bzw. Anspruchstypen**
   - Vorgabe von Zielarten,
   - Vorgabe von weiteren wertgebenden Arten,
   - Definition von räumlich-funktionalen Ansprüchen und Ansprüchen an Lebensraumgröße der Ziel bzw. wertgebenden Arten.
8.5 Klimatischer Ausgleich, Luftreinhaltung


9. Literatur


Hötker, H. (2004): Vögel der Agrarlandschaft – Bestand, Gefährdung, Schutz. NABU · Naturschutzbund Deutschland e.V., Bonn


LITERATUR


Wolf, H., Bönkisch, B. (2004): Abschlussbericht – Modellvorhaben StoraEnso/ Verbundvorhaben – Pappelanbau für die Papierherstellung, FKZ 95 NR 142/00 NR 094; Sachsenforst, OT Graupa, Pirna.
<table>
<thead>
<tr>
<th>Glossarwort</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anspruchstypen</td>
<td>(Ziel)artenkollektive, die nach ihren Habitatansprüchen zusammengefasst werden</td>
</tr>
<tr>
<td>anthropogen</td>
<td>durch den Menschen beeinflusst</td>
</tr>
<tr>
<td>Arthropoden</td>
<td>Stamm des Tierreichs (u.a. Insekten und Spinnen)</td>
</tr>
<tr>
<td>atro</td>
<td>absolut trocken, Berechnungsgrundlage für Gewichtsholz</td>
</tr>
<tr>
<td>Avifauna</td>
<td>Gesamtheit aller in einer Region vorkommenden Vogelarten</td>
</tr>
<tr>
<td>Bio-(Phyto-)remediation</td>
<td>Einsatz von Organismen (Phyto = Pflanzen) zur Beseitigung von Verunreinigungen und Schadstoffen</td>
</tr>
<tr>
<td>BtL-Kraftstoff</td>
<td>Kraftstoff aus Biomasse (Biomass to Liquid)</td>
</tr>
<tr>
<td>C₂</td>
<td>Gehalt an organischem Kohlenstoff (C)</td>
</tr>
<tr>
<td>Diasporen</td>
<td>Botanischer Sammelbegriff für Verbreitungsorgane wie u.a. Samen und Früchte</td>
</tr>
<tr>
<td>Evaporation</td>
<td>Verdunstung von Wasser auf unbewachsenem, freiem Land</td>
</tr>
<tr>
<td>Evapotranspiration</td>
<td>Evaporation + aktive Verdunstung durch Pflanzen</td>
</tr>
<tr>
<td>Habitat</td>
<td>charakteristischer Standort einer Art</td>
</tr>
<tr>
<td>Hybrid</td>
<td>Lebewesen, das durch Kreuzung von Eltern verschiedener Zuchtlinien, Rassen oder Arten hervorgegangen ist (auch Bastard)</td>
</tr>
<tr>
<td>Interzeption</td>
<td>Zurückhalten/Auskämmen von Niederschlägen auf der Oberfläche der Vegetation</td>
</tr>
<tr>
<td>Klimapotenzial</td>
<td>auf die Klimawirkung von CO₂ bezogene Wirkung anderer klimawirksamer Gase durch ungeschlechtliche Vermehrung entstandene Nachkommenschaft</td>
</tr>
<tr>
<td>Klon</td>
<td>durch ungeschlechtliche Vermehrung entstandene Nachkommenschaft</td>
</tr>
<tr>
<td>Meliorationskalkung</td>
<td>Maßnahme zur Erhöhung des pH-Wertes eines Bodens mittels Kalksteinmehl oder Branntkalk</td>
</tr>
<tr>
<td>mulchen</td>
<td>Bedecken des Bodens mit frischem organischen Materialien (Mulch)</td>
</tr>
<tr>
<td>Nutzbare Wasserspeicherkapazität (nWK)</td>
<td>Die im Boden gespeicherte und pflanzenverfügbare Menge an Wasser</td>
</tr>
<tr>
<td>Ökoton</td>
<td>Übergangsbereich zwischen zwei verschiedenen Ökosystemen</td>
</tr>
<tr>
<td>Phytophagen</td>
<td>Tiere, die sich von lebenden Pflanzen ernähren</td>
</tr>
<tr>
<td>Steckling</td>
<td>Sprossteil zur Anpflanzung mit vegetativer Vermehrung</td>
</tr>
<tr>
<td>Stockausschlag</td>
<td>Fähigkeit mancher Baumarten zur vegetativen Vermehrung aus dem Wurzelstock</td>
</tr>
<tr>
<td>Umtriebszeit</td>
<td>Zeitraum von der Bestandsbegründung bis zur Ernte</td>
</tr>
<tr>
<td>Zönose</td>
<td>Gemeinschaft von Organismen verschiedener Arten in einem abgrenzbaren Lebensraum</td>
</tr>
<tr>
<td>NABU Niederlande</td>
<td>NABU Niedersachsen</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Tübinger Straße 15, 70178 Stuttgart</td>
<td>Alleestr. 36, 30167 Hannover</td>
</tr>
<tr>
<td>Tel. 07 11.9 66 72-0</td>
<td>Tel. 05 11.91 10 5-0</td>
</tr>
<tr>
<td>Fax 07 11.9 66 72-33</td>
<td>Fax 05 11.9 11 05-40</td>
</tr>
<tr>
<td><a href="mailto:NABU@NABU-BW.de">NABU@NABU-BW.de</a></td>
<td><a href="mailto:Info@NABU-Niedersachsen.de">Info@NABU-Niedersachsen.de</a></td>
</tr>
<tr>
<td><a href="http://www.NABU-BW.de">www.NABU-BW.de</a></td>
<td><a href="http://www.NABU-Niedersachsen.de">www.NABU-Niedersachsen.de</a></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NABU Partner Bayern - Landesbund für Vogelschutz (LBV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eisvogelweg 1, 91161 Hilpoltstein</td>
</tr>
<tr>
<td>Tel. 0 91 74.47 75-0</td>
</tr>
<tr>
<td>Fax 0 91 74.47 75-75</td>
</tr>
<tr>
<td><a href="mailto:Info@LBV.de">Info@LBV.de</a></td>
</tr>
<tr>
<td><a href="http://www.LBV.de">www.LBV.de</a></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NABU Berlin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wollankstraße 4, 13187 Berlin</td>
</tr>
<tr>
<td>Tel. 0 30.9 86 41 07 oder 9 86 08 37-0</td>
</tr>
<tr>
<td>Fax 0 30.9 86 70 51</td>
</tr>
<tr>
<td><a href="mailto:LvlBerlin@NABU-Berlin.de">LvlBerlin@NABU-Berlin.de</a></td>
</tr>
<tr>
<td><a href="http://www.NABU-Berlin.de">www.NABU-Berlin.de</a></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NABU Brandenburg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lindenstraße 34, 14467 Potsdam</td>
</tr>
<tr>
<td>Tel. 03 31.2 01 55-70</td>
</tr>
<tr>
<td>Fax 03 31.2 01 55-77</td>
</tr>
<tr>
<td><a href="mailto:Info@NABU-Brandenburg.de">Info@NABU-Brandenburg.de</a></td>
</tr>
<tr>
<td><a href="http://www.NABU-Brandenburg.de">www.NABU-Brandenburg.de</a></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NABU Bremen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrescarpe 8, 28203 Bremen</td>
</tr>
<tr>
<td>Tel. 04 21.3 39 87 72</td>
</tr>
<tr>
<td>Fax 04 21.33 65 99 12</td>
</tr>
<tr>
<td><a href="mailto:Info@NABU-Bremen.de">Info@NABU-Bremen.de</a></td>
</tr>
<tr>
<td><a href="http://www.NABU-Bremen.de">www.NABU-Bremen.de</a></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NABU Hamburg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osterstraße 58, 20259 Hamburg</td>
</tr>
<tr>
<td>Tel. 0 40.69 70 89-0</td>
</tr>
<tr>
<td>Fax 0 40.69 70 89-19</td>
</tr>
<tr>
<td><a href="mailto:NABU@NABU-Hamburg.de">NABU@NABU-Hamburg.de</a></td>
</tr>
<tr>
<td><a href="http://www.NABU-Hamburg.de">www.NABU-Hamburg.de</a></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NABU Hessen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friedenstraße 26, 35578 Wetzlar</td>
</tr>
<tr>
<td>Tel. 0 64 41.6 79 04-0</td>
</tr>
<tr>
<td>Fax 064 41.6 79 04-29</td>
</tr>
<tr>
<td><a href="mailto:Info@NABU-Hessen.de">Info@NABU-Hessen.de</a></td>
</tr>
<tr>
<td><a href="http://www.NABU-Hessen.de">www.NABU-Hessen.de</a></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NABU Mecklenburg-Vorpommern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenalstr. 2, 19053 Schwerin</td>
</tr>
<tr>
<td>Tel. 03 85.7 58 94 81</td>
</tr>
<tr>
<td>Fax 03 85.7 58 94 98</td>
</tr>
<tr>
<td><a href="mailto:LGS@NABU-MV.de">LGS@NABU-MV.de</a></td>
</tr>
<tr>
<td><a href="http://www.NABU-MV.de">www.NABU-MV.de</a></td>
</tr>
</tbody>
</table>